Spaces:
Sleeping
Sleeping
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license | |
""" | |
Validate a trained YOLOv5 classification model on a classification dataset. | |
Usage: | |
$ bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) | |
$ python classify/val.py --weights yolov5m-cls.pt --data ../datasets/imagenet --img 224 # validate ImageNet | |
Usage - formats: | |
$ python classify/val.py --weights yolov5s-cls.pt # PyTorch | |
yolov5s-cls.torchscript # TorchScript | |
yolov5s-cls.onnx # ONNX Runtime or OpenCV DNN with --dnn | |
yolov5s-cls_openvino_model # OpenVINO | |
yolov5s-cls.engine # TensorRT | |
yolov5s-cls.mlmodel # CoreML (macOS-only) | |
yolov5s-cls_saved_model # TensorFlow SavedModel | |
yolov5s-cls.pb # TensorFlow GraphDef | |
yolov5s-cls.tflite # TensorFlow Lite | |
yolov5s-cls_edgetpu.tflite # TensorFlow Edge TPU | |
yolov5s-cls_paddle_model # PaddlePaddle | |
""" | |
import argparse | |
import os | |
import sys | |
from pathlib import Path | |
import torch | |
from tqdm import tqdm | |
FILE = Path(__file__).resolve() | |
ROOT = FILE.parents[1] # YOLOv5 root directory | |
if str(ROOT) not in sys.path: | |
sys.path.append(str(ROOT)) # add ROOT to PATH | |
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative | |
from models.common import DetectMultiBackend | |
from utils.dataloaders import create_classification_dataloader | |
from utils.general import ( | |
LOGGER, | |
TQDM_BAR_FORMAT, | |
Profile, | |
check_img_size, | |
check_requirements, | |
colorstr, | |
increment_path, | |
print_args, | |
) | |
from utils.torch_utils import select_device, smart_inference_mode | |
def run( | |
data=ROOT / "../datasets/mnist", # dataset dir | |
weights=ROOT / "yolov5s-cls.pt", # model.pt path(s) | |
batch_size=128, # batch size | |
imgsz=224, # inference size (pixels) | |
device="", # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
workers=8, # max dataloader workers (per RANK in DDP mode) | |
verbose=False, # verbose output | |
project=ROOT / "runs/val-cls", # save to project/name | |
name="exp", # save to project/name | |
exist_ok=False, # existing project/name ok, do not increment | |
half=False, # use FP16 half-precision inference | |
dnn=False, # use OpenCV DNN for ONNX inference | |
model=None, | |
dataloader=None, | |
criterion=None, | |
pbar=None, | |
): | |
# Initialize/load model and set device | |
training = model is not None | |
if training: # called by train.py | |
device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model | |
half &= device.type != "cpu" # half precision only supported on CUDA | |
model.half() if half else model.float() | |
else: # called directly | |
device = select_device(device, batch_size=batch_size) | |
# Directories | |
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run | |
save_dir.mkdir(parents=True, exist_ok=True) # make dir | |
# Load model | |
model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) | |
stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine | |
imgsz = check_img_size(imgsz, s=stride) # check image size | |
half = model.fp16 # FP16 supported on limited backends with CUDA | |
if engine: | |
batch_size = model.batch_size | |
else: | |
device = model.device | |
if not (pt or jit): | |
batch_size = 1 # export.py models default to batch-size 1 | |
LOGGER.info(f"Forcing --batch-size 1 square inference (1,3,{imgsz},{imgsz}) for non-PyTorch models") | |
# Dataloader | |
data = Path(data) | |
test_dir = data / "test" if (data / "test").exists() else data / "val" # data/test or data/val | |
dataloader = create_classification_dataloader( | |
path=test_dir, imgsz=imgsz, batch_size=batch_size, augment=False, rank=-1, workers=workers | |
) | |
model.eval() | |
pred, targets, loss, dt = [], [], 0, (Profile(device=device), Profile(device=device), Profile(device=device)) | |
n = len(dataloader) # number of batches | |
action = "validating" if dataloader.dataset.root.stem == "val" else "testing" | |
desc = f"{pbar.desc[:-36]}{action:>36}" if pbar else f"{action}" | |
bar = tqdm(dataloader, desc, n, not training, bar_format=TQDM_BAR_FORMAT, position=0) | |
with torch.cuda.amp.autocast(enabled=device.type != "cpu"): | |
for images, labels in bar: | |
with dt[0]: | |
images, labels = images.to(device, non_blocking=True), labels.to(device) | |
with dt[1]: | |
y = model(images) | |
with dt[2]: | |
pred.append(y.argsort(1, descending=True)[:, :5]) | |
targets.append(labels) | |
if criterion: | |
loss += criterion(y, labels) | |
loss /= n | |
pred, targets = torch.cat(pred), torch.cat(targets) | |
correct = (targets[:, None] == pred).float() | |
acc = torch.stack((correct[:, 0], correct.max(1).values), dim=1) # (top1, top5) accuracy | |
top1, top5 = acc.mean(0).tolist() | |
if pbar: | |
pbar.desc = f"{pbar.desc[:-36]}{loss:>12.3g}{top1:>12.3g}{top5:>12.3g}" | |
if verbose: # all classes | |
LOGGER.info(f"{'Class':>24}{'Images':>12}{'top1_acc':>12}{'top5_acc':>12}") | |
LOGGER.info(f"{'all':>24}{targets.shape[0]:>12}{top1:>12.3g}{top5:>12.3g}") | |
for i, c in model.names.items(): | |
acc_i = acc[targets == i] | |
top1i, top5i = acc_i.mean(0).tolist() | |
LOGGER.info(f"{c:>24}{acc_i.shape[0]:>12}{top1i:>12.3g}{top5i:>12.3g}") | |
# Print results | |
t = tuple(x.t / len(dataloader.dataset.samples) * 1e3 for x in dt) # speeds per image | |
shape = (1, 3, imgsz, imgsz) | |
LOGGER.info(f"Speed: %.1fms pre-process, %.1fms inference, %.1fms post-process per image at shape {shape}" % t) | |
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") | |
return top1, top5, loss | |
def parse_opt(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--data", type=str, default=ROOT / "../datasets/mnist", help="dataset path") | |
parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s-cls.pt", help="model.pt path(s)") | |
parser.add_argument("--batch-size", type=int, default=128, help="batch size") | |
parser.add_argument("--imgsz", "--img", "--img-size", type=int, default=224, help="inference size (pixels)") | |
parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu") | |
parser.add_argument("--workers", type=int, default=8, help="max dataloader workers (per RANK in DDP mode)") | |
parser.add_argument("--verbose", nargs="?", const=True, default=True, help="verbose output") | |
parser.add_argument("--project", default=ROOT / "runs/val-cls", help="save to project/name") | |
parser.add_argument("--name", default="exp", help="save to project/name") | |
parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment") | |
parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference") | |
parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference") | |
opt = parser.parse_args() | |
print_args(vars(opt)) | |
return opt | |
def main(opt): | |
check_requirements(ROOT / "requirements.txt", exclude=("tensorboard", "thop")) | |
run(**vars(opt)) | |
if __name__ == "__main__": | |
opt = parse_opt() | |
main(opt) | |