KB-VQA / app.py
m7mdal7aj's picture
Update app.py
b491c60 verified
raw
history blame
9.34 kB
import streamlit as st
import torch
import bitsandbytes
import accelerate
import scipy
import copy
from PIL import Image
import torch.nn as nn
import pandas as pd
from my_model.object_detection import detect_and_draw_objects
from my_model.captioner.image_captioning import get_caption
from my_model.gen_utilities import free_gpu_resources
from my_model.KBVQA import KBVQA, prepare_kbvqa_model
def answer_question(caption, detected_objects_str, question, model):
answer = model.generate_answer(question, caption, detected_objects_str)
return answer
# Sample images (assuming these are paths to your sample images)
sample_images = ["Files/sample1.jpg", "Files/sample2.jpg", "Files/sample3.jpg",
"Files/sample4.jpg", "Files/sample5.jpg", "Files/sample6.jpg",
"Files/sample7.jpg"]
def analyze_image(image, model):
img = copy.deepcopy(image) # we dont wanna apply changes to the original image
caption = model.get_caption(img)
image_with_boxes, detected_objects_str = model.detect_objects(img)
st.text("I am ready, let's talk!")
free_gpu_resources()
return caption, detected_objects_str, image_with_boxes
def image_qa_app(kbvqa):
if 'images_data' not in st.session_state:
st.session_state['images_data'] = {}
# Display sample images as clickable thumbnails
st.write("Choose from sample images:")
cols = st.columns(len(sample_images))
for idx, sample_image_path in enumerate(sample_images):
with cols[idx]:
image = Image.open(sample_image_path)
st.image(image, use_column_width=True)
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
process_new_image(sample_image_path, image, kbvqa)
# Image uploader
uploaded_image = st.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
if uploaded_image is not None:
process_new_image(uploaded_image.name, Image.open(uploaded_image), kbvqa)
# Display and interact with each uploaded/selected image
for image_key, image_data in st.session_state['images_data'].items():
st.image(image_data['image'], caption=f'Uploaded Image: {image_key[-11:]}', use_column_width=True)
if not image_data['analysis_done']:
st.text("Cool image, please click 'Analyze Image'..")
if st.button('Analyze Image', key=f'analyze_{image_key}'):
caption, detected_objects_str, image_with_boxes = analyze_image(image_data['image'], kbvqa) # we can use the image_with_boxes later if we want to show it.
image_data['caption'] = caption
image_data['detected_objects_str'] = detected_objects_str
image_data['analysis_done'] = True
# Initialize qa_history for each image
qa_history = image_data.get('qa_history', [])
if image_data['analysis_done']:
question = st.text_input(f"Ask a question about this image ({image_key[-11:]}):", key=f'question_{image_key}')
if st.button('Get Answer', key=f'answer_{image_key}'):
if question not in [q for q, _ in qa_history]:
answer = answer_question(image_data['caption'], image_data['detected_objects_str'], question, kbvqa)
qa_history.append((question, answer))
image_data['qa_history'] = qa_history
else:
st.info("This question has already been asked.")
# Display Q&A history for each image
for q, a in qa_history:
st.text(f"Q: {q}\nA: {a}\n")
def process_new_image(image_key, image, kbvqa):
"""Process a new image and update the session state."""
if image_key not in st.session_state['images_data']:
st.session_state['images_data'][image_key] = {
'image': image,
'caption': '',
'detected_objects_str': '',
'qa_history': [],
'analysis_done': False
}
def run_inference():
st.title("Run Inference")
st.write("Please note that this is not a general purpose model, it is specifically trained on OK-VQA dataset and is designed to give direct and short answers to the given questions.")
method = st.selectbox(
"Choose a method:",
["Fine-Tuned Model", "In-Context Learning (n-shots)"],
index=0
)
detection_model = st.selectbox(
"Choose a model for objects detection:",
["yolov5", "detic"],
index=1 # "detic" is selected by default
)
default_confidence = 0.2 if detection_model == "yolov5" else 0.4
confidence_level = st.slider(
"Select minimum detection confidence level",
min_value=0.1,
max_value=0.9,
value=default_confidence,
step=0.1
)
if 'model_settings' not in st.session_state:
st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
settings_changed = (st.session_state['model_settings']['detection_model'] != detection_model or
st.session_state['model_settings']['confidence_level'] != confidence_level)
if settings_changed:
st.text("Model Settings have changed, please reload the model, this will take no time :)")
button_label = "Reload Model" if settings_changed else "Load Model"
if method == "Fine-Tuned Model":
if 'kbvqa' not in st.session_state:
st.session_state['kbvqa'] = None
if st.button(button_label):
free_gpu_resources()
if st.session_state['kbvqa'] is not None:
if not settings_changed:
st.write("Model already loaded.")
else:
free_gpu_resources()
detection_model = st.session_state['model_settings']['detection_model']
confidence_level = st.session_state['model_settings']['confidence_level']
prepare_kbvqa_model(detection_model, only_reload_detection_model=True) # only reload detection model with new settings
st.session_state['kbvqa'].detection_confidence = confidence_level
free_gpu_resources()
else:
st.text("Loading the model will take no more than a few minutes . .")
st.session_state['kbvqa'] = prepare_kbvqa_model(detection_model)
st.session_state['kbvqa'].detection_confidence = confidence_level
st.session_state['model_settings'] = {'detection_model': detection_model, 'confidence_level': confidence_level}
st.write("Model is ready for inference.")
free_gpu_resources()
if st.session_state['kbvqa']:
image_qa_app(st.session_state['kbvqa'])
else:
st.write('Model is not ready for inference yet')
# Display model settings
if 'kbvqa' in st.session_state and st.session_state['kbvqa'] is not None:
model_settings = {
'Detection Model': st.session_state['model_settings']['detection_model'],
'Confidence Level': st.session_state['model_settings']['confidence_level']
}
st.write("### Current Model Settings:")
st.table(pd.DataFrame(model_settings, index=[0]))
# Main function
def main():
st.sidebar.title("Navigation")
selection = st.sidebar.radio("Go to", ["Home", "Dataset Analysis", "Finetuning and Evaluation Results", "Run Inference", "Dissertation Report", "Code"])
st.sidebar.write("More Pages will follow .. ")
if selection == "Home":
st.title("MultiModal Learning for Knowledg-Based Visual Question Answering")
st.write("Home page content goes here...")
elif selection == "Dissertation Report":
st.title("Dissertation Report")
st.write("Click the link below to view the PDF.")
# Example to display a link to a PDF
st.download_button(
label="Download PDF",
data=open("Files/Dissertation Report.pdf", "rb"),
file_name="example.pdf",
mime="application/octet-stream"
)
elif selection == "Evaluation Results":
st.title("Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Dataset Analysis":
st.title("OK-VQA Dataset Analysis")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Finetuning and Evaluation Results":
st.title("Finetuning and Evaluation Results")
st.write("This is a Place Holder until the contents are uploaded.")
elif selection == "Run Inference":
run_inference()
elif selection == "Code":
st.title("Code")
st.markdown("You can view the code for this project on the Hugging Face Space file page.")
st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_PlayGround/tree/main)", unsafe_allow_html=True)
elif selection == "More Pages will follow .. ":
st.title("Staye Tuned")
st.write("This is a Place Holder until the contents are uploaded.")
if __name__ == "__main__":
main()