Spaces:
Sleeping
Sleeping
import os | |
import altair as alt | |
from my_model.config import evaluation_config as config | |
import streamlit as st | |
from PIL import Image | |
import pandas as pd | |
import random | |
class ResultDemonstrator: | |
""" | |
A class to demonstrate the results of the Knowledge-Based Visual Question Answering (KB-VQA) model. | |
Attributes: | |
main_data (pd.DataFrame): Data loaded from an Excel file containing evaluation results. | |
sample_img_pool (list[str]): List of image file names available for demonstration. | |
model_names (list[str]): List of model names as defined in the configuration. | |
model_configs (list[str]): List of model configurations as defined in the configuration. | |
""" | |
def __init__(self) -> None: | |
""" | |
Initializes the ResultDemonstrator class by loading the data from an Excel file. | |
""" | |
# Load data | |
self.main_data = pd.read_excel(config.EVALUATION_DATA_PATH, sheet_name="Main Data") | |
self.sample_img_pool = list(os.listdir("Demo_Images")) | |
self.model_names = config.MODEL_NAMES | |
self.model_configs = config.MODEL_CONFIGURATIONS | |
def display_table(data: pd.DataFrame) -> None: | |
""" | |
Displays a DataFrame using Streamlit's dataframe display function. | |
Args: | |
data (pd.DataFrame): The data to display. | |
""" | |
st.dataframe(data) | |
def calculate_and_append_data(self, data_list: list, score_column: str, model_config: str) -> None: | |
""" | |
Calculates mean scores by category and appends them to the data list. | |
Args: | |
data_list (list): List to append new data rows. | |
score_column (str): Name of the column to calculate mean scores for. | |
model_config (str): Configuration of the model. | |
""" | |
if score_column in self.main_data.columns: | |
category_means = self.main_data.groupby('question_category')[score_column].mean() | |
for category, mean_value in category_means.items(): | |
data_list.append({ | |
"Category": category, | |
"Configuration": model_config, | |
"Mean Value": round(mean_value * 100, 2) | |
}) | |
def display_ablation_results_per_question_category(self) -> None: | |
"""Displays ablation results per question category for each model configuration.""" | |
score_types = ['vqa', 'vqa_gpt4', 'em', 'em_gpt4'] | |
data_lists = {key: [] for key in score_types} | |
column_names = { | |
'vqa': 'vqa_score_{config}', | |
'vqa_gpt4': 'gpt4_vqa_score_{config}', | |
'em': 'exact_match_score_{config}', | |
'em_gpt4': 'gpt4_em_score_{config}' | |
} | |
for model_name in config.MODEL_NAMES: | |
for conf in config.MODEL_CONFIGURATIONS: | |
model_config = f"{model_name}_{conf}" | |
for score_type, col_template in column_names.items(): | |
self.calculate_and_append_data(data_lists[score_type], | |
col_template.format(config=model_config), | |
model_config) | |
# Process and display results for each score type | |
for score_type, data_list in data_lists.items(): | |
df = pd.DataFrame(data_list) | |
results_df = df.pivot(index='Category', columns='Configuration', values='Mean Value').applymap( | |
lambda x: f"{x:.2f}%") | |
with st.expander(f"{score_type.upper()} Scores per Question Category and Model Configuration"): | |
self.display_table(results_df) | |
def display_main_results(self) -> None: | |
"""Displays the main model results from the Scores sheet, these are displayed from the file directly.""" | |
main_scores = pd.read_excel('evaluation_results.xlsx', sheet_name="Scores", index_col=0) | |
st.markdown("### Main Model Results (Inclusive of Ablation Experiments)") | |
main_scores.reset_index() | |
self.display_table(main_scores) | |
def plot_token_count_vs_scores(self, conf: str, model_name: str, score_name: str = 'VQA Score') -> None: | |
""" | |
Plots an interactive scatter plot comparing token counts to VQA or EM scores using Altair. | |
Args: | |
conf (str): The configuration name. | |
model_name (str): The name of the model. | |
score_name (str): The type of score to plot. | |
""" | |
# Construct the full model configuration name | |
model_configuration = f"{model_name}_{conf}" | |
# Determine the score column name and legend mapping based on the score type | |
if score_name == 'VQA Score': | |
score_column_name = f"vqa_score_{model_configuration}" | |
scores = self.main_data[score_column_name] | |
# Map scores to categories for the legend | |
legend_map = ['Correct' if score == 1 else 'Partially Correct' if round(score, 2) == 0.67 else 'Incorrect' | |
for score in scores] | |
color_scale = alt.Scale(domain=['Correct', 'Partially Correct', 'Incorrect'], range=['green', 'orange', | |
'red']) | |
else: | |
score_column_name = f"exact_match_score_{model_configuration}" | |
scores = self.main_data[score_column_name] | |
# Map scores to categories for the legend | |
legend_map = ['Correct' if score == 1 else 'Incorrect' for score in scores] | |
color_scale = alt.Scale(domain=['Correct', 'Incorrect'], range=['green', 'red']) | |
# Retrieve token counts from the data | |
token_counts = self.main_data[f'tokens_count_{conf}'] | |
# Create a DataFrame for the scatter plot | |
scatter_data = pd.DataFrame({ | |
'Index': range(len(token_counts)), | |
'Token Counts': token_counts, | |
score_name: legend_map | |
}) | |
# Create an interactive scatter plot using Altair | |
chart = alt.Chart(scatter_data).mark_circle( | |
size=60, | |
fillOpacity=1, # Sets the fill opacity to maximum | |
strokeWidth=1, # Adjusts the border width making the circles bolder | |
stroke='black' # Sets the border color to black | |
).encode( | |
x=alt.X('Index', scale=alt.Scale(domain=[0, 1020])), | |
y=alt.Y('Token Counts', scale=alt.Scale(domain=[token_counts.min()-200, token_counts.max()+200])), | |
color=alt.Color(score_name, scale=color_scale, legend=alt.Legend(title=score_name)), | |
tooltip=['Index', 'Token Counts', score_name] | |
).interactive() # Enables zoom & pan | |
chart = chart.properties( | |
title={ | |
"text": f"Token Counts vs {score_name} + Score + ({model_configuration})", | |
"color": "black", # Optional color | |
"fontSize": 20, # Optional font size | |
"anchor": "middle", # Optional anchor position | |
"offset": 0 # Optional offset | |
}, | |
width=700, | |
height=500 | |
) | |
# Display the interactive plot in Streamlit | |
st.altair_chart(chart, use_container_width=True) | |
def color_scores(value: float) -> str: | |
""" | |
Applies color coding based on the score value. | |
Args: | |
value (float): The score value. | |
Returns: | |
str: CSS color style based on score value. | |
""" | |
try: | |
value = float(value) # Convert to float to handle numerical comparisons | |
except ValueError: | |
return 'color: black;' # Return black if value is not a number | |
if value == 1.0: | |
return 'color: green;' | |
elif value == 0.0: | |
return 'color: red;' | |
elif value == 0.67: | |
return 'color: orange;' | |
return 'color: black;' | |
def show_samples(self, num_samples: int = 3) -> None: | |
""" | |
Displays random sample images and their associated models answers and evaluations. | |
Args: | |
num_samples (int): Number of sample images to display. | |
""" | |
# Sample images from the pool | |
target_imgs = random.sample(self.sample_img_pool, num_samples) | |
# Generate model configurations | |
model_configs = [f"{model_name}_{conf}" for model_name in self.model_names for conf in self.model_configs] | |
# Define column names for scores dynamically | |
column_names = { | |
'vqa': 'vqa_score_{config}', | |
'vqa_gpt4': 'gpt4_vqa_score_{config}', | |
'em': 'exact_match_score_{config}', | |
'em_gpt4': 'gpt4_em_score_{config}' | |
} | |
for img_filename in target_imgs: | |
image_data = self.main_data[self.main_data['image_filename'] == img_filename] | |
im = Image.open(f"demo/{img_filename}") | |
col1, col2 = st.columns([1, 2]) # to display images side by side with their data. | |
# Create a container for each image | |
with st.container(): | |
st.write("-------------------------------") | |
with col1: | |
st.image(im, use_column_width=True) | |
with st.expander('Show Caption'): | |
st.text(image_data.iloc[0]['caption']) | |
with st.expander('Show DETIC Objects'): | |
st.text(image_data.iloc[0]['objects_detic_trimmed']) | |
with st.expander('Show YOLOv5 Objects'): | |
st.text(image_data.iloc[0]['objects_yolov5']) | |
with col2: | |
if not image_data.empty: | |
st.write(f"**Question: {image_data.iloc[0]['question']}**") | |
st.write(f"**Ground Truth Answers:** {image_data.iloc[0]['raw_answers']}") | |
# Initialize an empty DataFrame for summary data | |
summary_data = pd.DataFrame( | |
columns=['Model Configuration', 'Answer', 'VQA Score', 'VQA Score (GPT-4)', 'EM Score', | |
'EM Score (GPT-4)']) | |
for config in model_configs: | |
# Collect data for each model configuration | |
row_data = { | |
'Model Configuration': config, | |
'Answer': image_data.iloc[0].get(f'{config}', '-') | |
} | |
for score_type, score_template in column_names.items(): | |
score_col = score_template.format(config=config) | |
score_value = image_data.iloc[0].get(score_col, '-') | |
if pd.notna(score_value) and not isinstance(score_value, str): | |
# Format score to two decimals if it's a valid number | |
score_value = f"{float(score_value):.2f}" | |
row_data[score_type.replace('_', ' ').title()] = score_value | |
# Convert row data to a DataFrame and concatenate it | |
rd = pd.DataFrame([row_data]) | |
rd.columns = summary_data.columns | |
summary_data = pd.concat([summary_data, rd], axis=0, ignore_index=True) | |
# Apply styling to DataFrame for score coloring | |
styled_summary = summary_data.style.applymap(self.color_scores, | |
subset=['VQA Score', 'VQA Score (GPT-4)', | |
'EM Score', | |
'EM Score (GPT-4)']) | |
st.markdown(styled_summary.to_html(escape=False, index=False), unsafe_allow_html=True) | |
else: | |
st.write("No data available for this image.") | |