Spaces:
Running
Running
import pandas as pd | |
from collections import Counter | |
import json | |
import os | |
from PIL import Image | |
import numpy as np | |
import torch | |
import matplotlib.pyplot as plt | |
from IPython import get_ipython | |
import sys | |
import gc | |
import streamlit as st | |
class VQADataProcessor: | |
""" | |
A class to process OKVQA dataset. | |
Attributes: | |
questions_file_path (str): The file path for the questions JSON file. | |
annotations_file_path (str): The file path for the annotations JSON file. | |
questions (list): List of questions extracted from the JSON file. | |
annotations (list): List of annotations extracted from the JSON file. | |
df_questions (DataFrame): DataFrame created from the questions list. | |
df_answers (DataFrame): DataFrame created from the annotations list. | |
merged_df (DataFrame): DataFrame resulting from merging questions and answers. | |
""" | |
def __init__(self, questions_file_path, annotations_file_path): | |
""" | |
Initializes the VQADataProcessor with file paths for questions and annotations. | |
Parameters: | |
questions_file_path (str): The file path for the questions JSON file. | |
annotations_file_path (str): The file path for the annotations JSON file. | |
""" | |
self.questions_file_path = questions_file_path | |
self.annotations_file_path = annotations_file_path | |
self.questions, self.annotations = self.read_json_files() | |
self.df_questions = pd.DataFrame(self.questions) | |
self.df_answers = pd.DataFrame(self.annotations) | |
self.merged_df = None | |
def read_json_files(self): | |
""" | |
Reads the JSON files for questions and annotations. | |
Returns: | |
tuple: A tuple containing two lists: questions and annotations. | |
""" | |
with open(self.questions_file_path, 'r') as file: | |
data = json.load(file) | |
questions = data['questions'] | |
with open(self.annotations_file_path, 'r') as file: | |
data = json.load(file) | |
annotations = data['annotations'] | |
return questions, annotations | |
def find_most_frequent(my_list): | |
""" | |
Finds the most frequent item in a list. | |
Parameters: | |
my_list (list): A list of items. | |
Returns: | |
The most frequent item in the list. Returns None if the list is empty. | |
""" | |
if not my_list: | |
return None | |
counter = Counter(my_list) | |
most_common = counter.most_common(1) | |
return most_common[0][0] | |
def merge_dataframes(self): | |
""" | |
Merges the questions and answers DataFrames on 'question_id' and 'image_id'. | |
""" | |
self.merged_df = pd.merge(self.df_questions, self.df_answers, on=['question_id', 'image_id']) | |
def join_words_with_hyphen(self, sentence): | |
return '-'.join(sentence.split()) | |
def process_answers(self): | |
""" | |
Processes the answers by extracting raw and processed answers and finding the most frequent ones. | |
""" | |
if self.merged_df is not None: | |
self.merged_df['raw_answers'] = self.merged_df['answers'].apply(lambda x: [ans['raw_answer'] for ans in x]) | |
self.merged_df['processed_answers'] = self.merged_df['answers'].apply( | |
lambda x: [ans['answer'] for ans in x]) | |
self.merged_df['most_frequent_raw_answer'] = self.merged_df['raw_answers'].apply(self.find_most_frequent) | |
self.merged_df['most_frequent_processed_answer'] = self.merged_df['processed_answers'].apply( | |
self.find_most_frequent) | |
self.merged_df.drop(columns=['answers'], inplace=True) | |
else: | |
print("DataFrames have not been merged yet.") | |
# Apply the function to the 'most_frequent_processed_answer' column | |
self.merged_df['single_word_answers'] = self.merged_df['most_frequent_processed_answer'].apply( | |
self.join_words_with_hyphen) | |
def get_processed_data(self): | |
""" | |
Retrieves the processed DataFrame. | |
Returns: | |
DataFrame: The processed DataFrame. Returns None if the DataFrame is empty or not processed. | |
""" | |
if self.merged_df is not None: | |
return self.merged_df | |
else: | |
print("DataFrame is empty or not processed yet.") | |
return None | |
def save_to_csv(self, df, saved_file_name): | |
if saved_file_name is not None: | |
if ".csv" not in saved_file_name: | |
df.to_csv(os.path.join(saved_file_name, ".csv"), index=None) | |
else: | |
df.to_csv(saved_file_name, index=None) | |
else: | |
df.to_csv("data.csv", index=None) | |
def display_dataframe(self): | |
""" | |
Displays the processed DataFrame. | |
""" | |
if self.merged_df is not None: | |
print(self.merged_df) | |
else: | |
print("DataFrame is empty.") | |
def process_okvqa_dataset(questions_file_path, annotations_file_path, save_to_csv=False, saved_file_name=None): | |
""" | |
Processes the OK-VQA dataset given the file paths for questions and annotations. | |
Parameters: | |
questions_file_path (str): The file path for the questions JSON file. | |
annotations_file_path (str): The file path for the annotations JSON file. | |
Returns: | |
DataFrame: The processed DataFrame containing merged and processed VQA data. | |
""" | |
# Create an instance of the class | |
processor = VQADataProcessor(questions_file_path, annotations_file_path) | |
# Process the data | |
processor.merge_dataframes() | |
processor.process_answers() | |
# Retrieve the processed DataFrame | |
processed_data = processor.get_processed_data() | |
if save_to_csv: | |
processor.save_to_csv(processed_data, saved_file_name) | |
return processed_data | |
def show_image(image): | |
""" | |
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces). | |
Handles different types of image inputs (file path, PIL Image, numpy array, OpenCV, PyTorch tensor). | |
Args: | |
image (str or PIL.Image or numpy.ndarray or torch.Tensor): The image to display. | |
""" | |
in_jupyter = is_jupyter_notebook() | |
in_colab = is_google_colab() | |
# Convert image to PIL Image if it's a file path, numpy array, or PyTorch tensor | |
if isinstance(image, str): | |
if os.path.isfile(image): | |
image = Image.open(image) | |
else: | |
raise ValueError("File path provided does not exist.") | |
elif isinstance(image, np.ndarray): | |
if image.ndim == 3 and image.shape[2] in [3, 4]: | |
image = Image.fromarray(image[..., ::-1] if image.shape[2] == 3 else image) | |
else: | |
image = Image.fromarray(image) | |
elif torch.is_tensor(image): | |
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8)) | |
# Display the image | |
if in_jupyter or in_colab: | |
from IPython.display import display | |
display(image) | |
else: | |
image.show() | |
def show_image_with_matplotlib(image): | |
if isinstance(image, str): | |
image = Image.open(image) | |
elif isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
elif torch.is_tensor(image): | |
image = Image.fromarray(image.permute(1, 2, 0).numpy().astype(np.uint8)) | |
plt.imshow(image) | |
plt.axis('off') # Turn off axis numbers | |
plt.show() | |
def is_jupyter_notebook(): | |
""" | |
Check if the code is running in a Jupyter notebook. | |
Returns: | |
bool: True if running in a Jupyter notebook, False otherwise. | |
""" | |
try: | |
from IPython import get_ipython | |
if 'IPKernelApp' not in get_ipython().config: | |
return False | |
if 'ipykernel' in str(type(get_ipython())): | |
return True # Running in Jupyter Notebook | |
except (NameError, AttributeError): | |
return False # Not running in Jupyter Notebook | |
return False # Default to False if none of the above conditions are met | |
def is_pycharm(): | |
return 'PYCHARM_HOSTED' in os.environ | |
def is_google_colab(): | |
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules | |
def get_image_path(name, path_type): | |
""" | |
Generates a path for models, images, or data based on the specified type. | |
Args: | |
name (str): The name of the model, image, or data folder/file. | |
path_type (str): The type of path needed ('models', 'images', or 'data'). | |
Returns: | |
str: The full path to the specified resource. | |
""" | |
# Get the current working directory (assumed to be inside 'code' folder) | |
current_dir = os.getcwd() | |
# Get the directory one level up (the parent directory) | |
parent_dir = os.path.dirname(current_dir) | |
# Construct the path to the specified folder | |
folder_path = os.path.join(parent_dir, path_type) | |
# Construct the full path to the specific resource | |
full_path = os.path.join(folder_path, name) | |
return full_path | |
def get_model_path(model_name): | |
""" | |
Get the path to the 'model1' folder. | |
Returns: | |
str: Absolute path to the 'model1' folder. | |
""" | |
# Directory of the current script | |
current_script_dir = os.path.dirname(os.path.abspath(__file__)) | |
# Directory of the 'my_project' folder (parent of the 'my_model' folder) | |
project_dir = os.path.dirname(current_script_dir) | |
# Path to the 'models/{model_name}' folder | |
model_path = os.path.join(project_dir, "models", model_name) | |
return model_path | |
def free_gpu_resources(): | |
""" | |
Clears GPU memory. | |
""" | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.empty_cache() | |
gc.collect() | |
gc.collect() | |
if __name__ == "__main__": | |
pass | |
#val_data = process_okvqa_dataset('OpenEnded_mscoco_val2014_questions.json', 'mscoco_val2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_val.csv") | |
#train_data = process_okvqa_dataset('OpenEnded_mscoco_train2014_questions.json', 'mscoco_train2014_annotations.json', save_to_csv=True, saved_file_name="okvqa_train.csv") | |