Spaces:
Sleeping
Sleeping
import pandas as pd | |
from fuzzywuzzy import fuzz | |
from collections import Counter | |
from nltk.stem import PorterStemmer | |
from ast import literal_eval | |
from typing import Union, List | |
import streamlit as st | |
class KBVQAEvaluator: | |
def __init__(self): | |
""" | |
Initialize the VQA Processor with the dataset and configuration settings. | |
""" | |
self.data_path = 'Files/evaluation_results_final.xlsx' | |
self.use_fuzzy = False | |
self.stemmer = PorterStemmer() | |
self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores") | |
self.df = pd.read_excel(self.data_path, sheet_name="Main Data") | |
self.vqa_scores = {} | |
self.exact_match_scores = {} | |
def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]: | |
""" | |
Apply Porter Stemmer to either a single string or a list of strings. | |
""" | |
if isinstance(answers, list): | |
return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers] | |
else: | |
words = answers.split() | |
return " ".join(self.stemmer.stem(word.strip()) for word in words) | |
def calculate_vqa_score(self, ground_truths, model_answer): | |
""" | |
Calculate VQA score based on the number of matching answers, with optional fuzzy matching. | |
""" | |
if self.use_fuzzy: | |
fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths) | |
return min(fuzzy_matches / 3, 1) | |
else: | |
count = Counter(ground_truths) | |
return min(count.get(model_answer, 0) / 3, 1) | |
def calculate_exact_match_score(self, ground_truths, model_answer): | |
""" | |
Calculate Exact Match score, with optional fuzzy matching. | |
""" | |
if self.use_fuzzy: | |
return int(any(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths)) | |
else: | |
return int(model_answer in ground_truths) | |
def evaluate(self): | |
""" | |
Process the DataFrame: stem answers, calculate scores, and store results. | |
""" | |
self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers) | |
model_configurations = ['caption+detic', 'caption+yolov5', 'only_caption', 'only_detic', 'only_yolov5'] | |
model_names = ['13b', '7b'] | |
for name in model_names: | |
for config in model_configurations: | |
full_config = f'{name}_{config}' | |
self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers) | |
self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) | |
self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) | |
self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2) | |
self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2) | |
def save_results(self): | |
# Create a DataFrame for the scores | |
scores_data = { | |
'Model Configuration': list(self.vqa_scores.keys()), | |
'VQA Score': list(self.vqa_scores.values()), | |
'Exact Match Score': list(self.exact_match_scores.values()) | |
} | |
scores_df = pd.DataFrame(scores_data) | |
# Saving the scores DataFrame to an Excel file | |
with pd.ExcelWriter('evaluation_results_final.xlsx', engine='openpyxl', mode='w') as writer: | |
scores_df.to_excel(writer, sheet_name='Scores', index=False) | |
def run_evaluator(self): | |
#evaluator.evaluate() | |
st.table(self.scores_df) | |
st.dataframe(self.scores_df, width=900, height=500) | |
#print(evaluator.exact_match_scores) | |
#evaluator.save_results() | |