Spaces:
Running
Running
import os | |
import io | |
import torch | |
import PIL | |
from PIL import Image | |
from typing import Optional, Union, List | |
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration | |
import bitsandbytes | |
import accelerate | |
from my_model.config import captioning_config as config | |
from my_model.utilities.gen_utilities import free_gpu_resources | |
class ImageCaptioningModel: | |
""" | |
A class to handle image captioning using InstructBlip model. | |
Attributes: | |
model_type (str): Type of the model to use. | |
processor (InstructBlipProcessor or None): The processor for handling image input. | |
model (InstructBlipForConditionalGeneration or None): The loaded model. | |
prompt (str): Prompt for the model. | |
max_image_size (int): Maximum size for the input image. | |
min_length (int): Minimum length of the generated caption. | |
max_new_tokens (int): Maximum number of new tokens to generate. | |
model_path (str): Path to the pre-trained model. | |
device_map (str): Device map for model loading. | |
torch_dtype (torch.dtype): Data type for torch tensors. | |
load_in_8bit (bool): Whether to load the model in 8-bit precision. | |
load_in_4bit (bool): Whether to load the model in 4-bit precision. | |
low_cpu_mem_usage (bool): Whether to optimize for low CPU memory usage. | |
skip_special_tokens (bool): Whether to skip special tokens in the generated captions. | |
""" | |
def __init__(self) -> None: | |
""" | |
Initializes the ImageCaptioningModel class with configuration settings. | |
""" | |
self.model_type = config.MODEL_TYPE | |
self.processor = None | |
self.model = None | |
self.prompt = config.PROMPT | |
self.max_image_size = config.MAX_IMAGE_SIZE | |
self.min_length = config.MIN_LENGTH | |
self.max_new_tokens = config.MAX_NEW_TOKENS | |
self.model_path = config.MODEL_PATH | |
self.device_map = config.DEVICE_MAP | |
self.torch_dtype = config.TORCH_DTYPE | |
self.load_in_8bit = config.LOAD_IN_8BIT | |
self.load_in_4bit = config.LOAD_IN_4BIT | |
self.low_cpu_mem_usage = config.LOW_CPU_MEM_USAGE | |
self.skip_secial_tokens = config.SKIP_SPECIAL_TOKENS | |
def load_model(self) -> None: | |
""" | |
Loads the InstructBlip model and processor based on the specified configuration. | |
""" | |
if self.load_in_4bit and self.load_in_8bit: # Ensure only one of 4-bit or 8-bit precision is used. | |
self.load_in_4bit = False | |
if self.model_type == 'i_blip': | |
self.processor = InstructBlipProcessor.from_pretrained(self.model_path, | |
load_in_8bit=self.load_in_8bit, | |
load_in_4bit=self.load_in_4bit, | |
torch_dtype=self.torch_dtype, | |
device_map=self.device_map | |
) | |
free_gpu_resources() | |
self.model = InstructBlipForConditionalGeneration.from_pretrained(self.model_path, | |
load_in_8bit=self.load_in_8bit, | |
load_in_4bit=self.load_in_4bit, | |
torch_dtype=self.torch_dtype, | |
low_cpu_mem_usage=self.low_cpu_mem_usage, | |
device_map=self.device_map | |
) | |
free_gpu_resources() | |
def resize_image(self, image: Image.Image, max_image_size: Optional[int] = None) -> Image.Image: | |
""" | |
Resizes the image to fit within the specified maximum size while maintaining aspect ratio. | |
Args: | |
image (Image.Image): The input image to resize. | |
max_image_size (Optional[int]): The maximum size for the resized image. Defaults to None. | |
Returns: | |
Image.Image: The resized image. | |
""" | |
if max_image_size is None: | |
max_image_size = int(os.getenv("MAX_IMAGE_SIZE", "1024")) | |
h, w = image.size | |
scale = max_image_size / max(h, w) | |
if scale < 1: | |
new_w = int(w * scale) | |
new_h = int(h * scale) | |
image = image.resize((new_w, new_h), resample=PIL.Image.Resampling.LANCZOS) | |
return image | |
def generate_caption(self, image_path: Union[str, io.IOBase, Image.Image]) -> str: | |
""" | |
Generates a caption for the given image. | |
Args: | |
image_path (Union[str, io.IOBase, Image.Image]): The path to the image, file-like object, or PIL Image. | |
Returns: | |
str: The generated caption for the image. | |
""" | |
free_gpu_resources() | |
free_gpu_resources() | |
if isinstance(image_path, str) or isinstance(image_path, io.IOBase): | |
# If it's a file path or file-like object, open it as a PIL Image | |
image = Image.open(image_path) | |
elif isinstance(image_path, Image.Image): | |
image = image_path | |
image = self.resize_image(image) | |
inputs = self.processor(image, self.prompt, return_tensors="pt").to("cuda", self.torch_dtype) | |
outputs = self.model.generate(**inputs, min_length=self.min_length, max_new_tokens=self.max_new_tokens) | |
caption = self.processor.decode(outputs[0], skip_special_tokens=self.skip_secial_tokens).strip() | |
free_gpu_resources() | |
free_gpu_resources() | |
return caption | |
def generate_captions_for_multiple_images(self, image_paths: List[Union[str, io.IOBase, Image.Image]]) -> List[str]: | |
""" | |
Generates captions for multiple images. | |
Args: | |
image_paths (List[Union[str, io.IOBase, Image.Image]]): A list of paths to images, file-like objects, or PIL Images. | |
Returns: | |
List[str]: A list of captions for the provided images. | |
""" | |
return [self.generate_caption(image_path) for image_path in image_paths] | |
def get_caption(img: Union[str, io.IOBase, Image.Image]) -> str: | |
""" | |
Loads the captioning model and generates a caption for a single image. | |
Args: | |
img (Union[str, io.IOBase, Image.Image]): The path to the image, file-like object, or PIL Image. | |
Returns: | |
str: The generated caption for the image. | |
""" | |
captioner = ImageCaptioningModel() | |
free_gpu_resources() | |
captioner.load_model() | |
free_gpu_resources() | |
caption = captioner.generate_caption(img) | |
free_gpu_resources() | |
return caption |