Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
import bitsandbytes
|
4 |
import accelerate
|
5 |
import scipy
|
|
|
6 |
from PIL import Image
|
7 |
import torch.nn as nn
|
8 |
from my_model.object_detection import detect_and_draw_objects
|
@@ -64,10 +65,12 @@ def image_qa_app(kbvqa):
|
|
64 |
cols = st.columns(len(sample_images))
|
65 |
for idx, sample_image_path in enumerate(sample_images):
|
66 |
with cols[idx]:
|
|
|
67 |
image = Image.open(sample_image_path)
|
68 |
-
|
69 |
-
if st.button(f'Sample Image {idx + 1}', key=f'sample_{idx}'):
|
70 |
st.session_state['current_image'] = image
|
|
|
71 |
st.session_state['qa_history'] = []
|
72 |
|
73 |
# Image uploader
|
@@ -77,7 +80,6 @@ def image_qa_app(kbvqa):
|
|
77 |
st.session_state['current_image'] = image
|
78 |
st.session_state['processed_image'] = copy.deepcopy(image)
|
79 |
st.session_state['qa_history'] = []
|
80 |
-
print("Image uploaded and processed image set.")
|
81 |
|
82 |
# Display the current image (unaltered)
|
83 |
if st.session_state.get('current_image') is not None:
|
@@ -88,17 +90,13 @@ def image_qa_app(kbvqa):
|
|
88 |
if st.button('Get Answer'):
|
89 |
processed_image = st.session_state.get('processed_image')
|
90 |
if processed_image:
|
91 |
-
print("Processing image for question:", question)
|
92 |
answer = answer_question(processed_image, question, model=kbvqa)
|
93 |
st.session_state['qa_history'].append((question, answer))
|
94 |
-
print("Answer generated:", answer)
|
95 |
|
96 |
# Display all Q&A
|
97 |
for q, a in st.session_state['qa_history']:
|
98 |
st.text(f"Q: {q}\nA: {a}\n")
|
99 |
|
100 |
-
st.session_state['processed_image'] = processed_image
|
101 |
-
|
102 |
|
103 |
# Main function
|
104 |
def main():
|
|
|
3 |
import bitsandbytes
|
4 |
import accelerate
|
5 |
import scipy
|
6 |
+
import copy
|
7 |
from PIL import Image
|
8 |
import torch.nn as nn
|
9 |
from my_model.object_detection import detect_and_draw_objects
|
|
|
65 |
cols = st.columns(len(sample_images))
|
66 |
for idx, sample_image_path in enumerate(sample_images):
|
67 |
with cols[idx]:
|
68 |
+
# Display each sample image with a button
|
69 |
image = Image.open(sample_image_path)
|
70 |
+
st.image(image, use_column_width=True)
|
71 |
+
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx}'):
|
72 |
st.session_state['current_image'] = image
|
73 |
+
st.session_state['processed_image'] = copy.deepcopy(image)
|
74 |
st.session_state['qa_history'] = []
|
75 |
|
76 |
# Image uploader
|
|
|
80 |
st.session_state['current_image'] = image
|
81 |
st.session_state['processed_image'] = copy.deepcopy(image)
|
82 |
st.session_state['qa_history'] = []
|
|
|
83 |
|
84 |
# Display the current image (unaltered)
|
85 |
if st.session_state.get('current_image') is not None:
|
|
|
90 |
if st.button('Get Answer'):
|
91 |
processed_image = st.session_state.get('processed_image')
|
92 |
if processed_image:
|
|
|
93 |
answer = answer_question(processed_image, question, model=kbvqa)
|
94 |
st.session_state['qa_history'].append((question, answer))
|
|
|
95 |
|
96 |
# Display all Q&A
|
97 |
for q, a in st.session_state['qa_history']:
|
98 |
st.text(f"Q: {q}\nA: {a}\n")
|
99 |
|
|
|
|
|
100 |
|
101 |
# Main function
|
102 |
def main():
|