Spaces:
Sleeping
Sleeping
Update my_model/tabs/readme.txt
Browse files- my_model/tabs/readme.txt +4 -0
my_model/tabs/readme.txt
CHANGED
@@ -2,10 +2,12 @@
|
|
2 |
Directory Overview: This directory contains all the atreamlit application pages:
|
3 |
|
4 |
################################################################################################################################
|
|
|
5 |
## 1. home.py
|
6 |
the `home.py` displays an introduction to the application with brief background and description of the application tools.
|
7 |
|
8 |
################################################################################################################################
|
|
|
9 |
## 2. results.py
|
10 |
The `results.py` module manages the interactive Streamlit demo for visualizing model evaluation results and analysis.
|
11 |
It provides an interface for users to explore different aspects of model performance and evaluation samples.
|
@@ -15,6 +17,7 @@ Ensure the necessary dependencies are installed and properly configured.
|
|
15 |
The `run_demo` function relies on the ResultDemonstrator class to generate plots and display results.
|
16 |
|
17 |
################################################################################################################################
|
|
|
18 |
## 3. run_inference.py
|
19 |
The `run_inference.py` is responsible for the running inference to test and use the fine-tuned models.
|
20 |
It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question
|
@@ -33,6 +36,7 @@ The `model_arch.py` displays the model architecture and accompanying abstract an
|
|
33 |
Knowledge-Based Visual Question Answering (KB-VQA) model.
|
34 |
|
35 |
################################################################################################################################
|
|
|
36 |
## 5. dataset_analysis.py
|
37 |
The dataset_analysis.py module provides tools for analyzing and visualizing distributions of question types
|
38 |
within given question datasets for Knowledge-Based Visual Question Answering (KBVQA). It supports operations
|
|
|
2 |
Directory Overview: This directory contains all the atreamlit application pages:
|
3 |
|
4 |
################################################################################################################################
|
5 |
+
|
6 |
## 1. home.py
|
7 |
the `home.py` displays an introduction to the application with brief background and description of the application tools.
|
8 |
|
9 |
################################################################################################################################
|
10 |
+
|
11 |
## 2. results.py
|
12 |
The `results.py` module manages the interactive Streamlit demo for visualizing model evaluation results and analysis.
|
13 |
It provides an interface for users to explore different aspects of model performance and evaluation samples.
|
|
|
17 |
The `run_demo` function relies on the ResultDemonstrator class to generate plots and display results.
|
18 |
|
19 |
################################################################################################################################
|
20 |
+
|
21 |
## 3. run_inference.py
|
22 |
The `run_inference.py` is responsible for the running inference to test and use the fine-tuned models.
|
23 |
It manages the user interface and interactions for a Streamlit-based Knowledge-Based Visual Question
|
|
|
36 |
Knowledge-Based Visual Question Answering (KB-VQA) model.
|
37 |
|
38 |
################################################################################################################################
|
39 |
+
|
40 |
## 5. dataset_analysis.py
|
41 |
The dataset_analysis.py module provides tools for analyzing and visualizing distributions of question types
|
42 |
within given question datasets for Knowledge-Based Visual Question Answering (KBVQA). It supports operations
|