Spaces:
Sleeping
Sleeping
Update my_model/utilities/gen_utilities.py
Browse files
my_model/utilities/gen_utilities.py
CHANGED
@@ -10,15 +10,17 @@ import gc
|
|
10 |
import streamlit as st
|
11 |
|
12 |
|
13 |
-
|
14 |
-
def show_image(image):
|
15 |
"""
|
16 |
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
17 |
-
Handles different types of image inputs (file path, PIL Image, numpy array,
|
18 |
|
19 |
Args:
|
20 |
-
image (str
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
in_jupyter = is_jupyter_notebook()
|
24 |
in_colab = is_google_colab()
|
@@ -53,7 +55,17 @@ def show_image(image):
|
|
53 |
|
54 |
|
55 |
|
56 |
-
def show_image_with_matplotlib(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
if isinstance(image, str):
|
58 |
image = Image.open(image)
|
59 |
elif isinstance(image, np.ndarray):
|
@@ -66,7 +78,7 @@ def show_image_with_matplotlib(image):
|
|
66 |
plt.show()
|
67 |
|
68 |
|
69 |
-
def is_jupyter_notebook():
|
70 |
"""
|
71 |
Check if the code is running in a Jupyter notebook.
|
72 |
|
@@ -85,25 +97,40 @@ def is_jupyter_notebook():
|
|
85 |
return False # Default to False if none of the above conditions are met
|
86 |
|
87 |
|
88 |
-
def is_pycharm():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
return 'PYCHARM_HOSTED' in os.environ
|
90 |
|
91 |
|
92 |
-
def is_google_colab():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
|
94 |
|
95 |
|
96 |
-
def get_image_path(name, path_type):
|
97 |
"""
|
98 |
Generates a path for models, images, or data based on the specified type.
|
99 |
|
100 |
Args:
|
101 |
-
|
102 |
-
|
103 |
|
104 |
Returns:
|
105 |
-
|
106 |
"""
|
|
|
107 |
# Get the current working directory (assumed to be inside 'code' folder)
|
108 |
current_dir = os.getcwd()
|
109 |
|
@@ -119,7 +146,7 @@ def get_image_path(name, path_type):
|
|
119 |
return full_path
|
120 |
|
121 |
|
122 |
-
def get_model_path(model_name):
|
123 |
"""
|
124 |
Get the path to the specified model folder.
|
125 |
|
@@ -129,6 +156,7 @@ def get_model_path(model_name):
|
|
129 |
Returns:
|
130 |
str: Absolute path to the specified model folder.
|
131 |
"""
|
|
|
132 |
# Directory of the current script
|
133 |
current_script_dir = os.path.dirname(os.path.abspath(__file__))
|
134 |
|
@@ -140,11 +168,62 @@ def get_model_path(model_name):
|
|
140 |
|
141 |
return model_path
|
142 |
|
|
|
|
|
|
|
|
|
143 |
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
"""
|
147 |
Clears GPU memory.
|
|
|
|
|
|
|
148 |
"""
|
149 |
|
150 |
if torch.cuda.is_available():
|
|
|
10 |
import streamlit as st
|
11 |
|
12 |
|
13 |
+
def show_image(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None:
|
|
|
14 |
"""
|
15 |
Display an image in various environments (Jupyter, PyCharm, Hugging Face Spaces).
|
16 |
+
Handles different types of image inputs (file path, PIL Image, numpy array, PyTorch tensor).
|
17 |
|
18 |
Args:
|
19 |
+
image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
None
|
23 |
+
"""
|
24 |
|
25 |
in_jupyter = is_jupyter_notebook()
|
26 |
in_colab = is_google_colab()
|
|
|
55 |
|
56 |
|
57 |
|
58 |
+
def show_image_with_matplotlib(image: Union[str, Image.Image, np.ndarray, torch.Tensor]) -> None:
|
59 |
+
"""
|
60 |
+
Display an image using Matplotlib.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
image (Union[str, Image.Image, np.ndarray, torch.Tensor]): The image to display.
|
64 |
+
|
65 |
+
Returns:
|
66 |
+
None
|
67 |
+
"""
|
68 |
+
|
69 |
if isinstance(image, str):
|
70 |
image = Image.open(image)
|
71 |
elif isinstance(image, np.ndarray):
|
|
|
78 |
plt.show()
|
79 |
|
80 |
|
81 |
+
def is_jupyter_notebook() -> bool:
|
82 |
"""
|
83 |
Check if the code is running in a Jupyter notebook.
|
84 |
|
|
|
97 |
return False # Default to False if none of the above conditions are met
|
98 |
|
99 |
|
100 |
+
def is_pycharm() -> bool:
|
101 |
+
"""
|
102 |
+
Check if the code is running in PyCharm.
|
103 |
+
|
104 |
+
Returns:
|
105 |
+
bool: True if running in PyCharm, False otherwise.
|
106 |
+
"""
|
107 |
+
|
108 |
return 'PYCHARM_HOSTED' in os.environ
|
109 |
|
110 |
|
111 |
+
def is_google_colab() -> bool:
|
112 |
+
"""
|
113 |
+
Check if the code is running in Google Colab.
|
114 |
+
|
115 |
+
Returns:
|
116 |
+
bool: True if running in Google Colab, False otherwise.
|
117 |
+
"""
|
118 |
+
|
119 |
return 'COLAB_GPU' in os.environ or 'google.colab' in sys.modules
|
120 |
|
121 |
|
122 |
+
def get_image_path(name: str, path_type: str) -> str:
|
123 |
"""
|
124 |
Generates a path for models, images, or data based on the specified type.
|
125 |
|
126 |
Args:
|
127 |
+
name (str): The name of the model, image, or data folder/file.
|
128 |
+
path_type (str): The type of path needed ('models', 'images', or 'data').
|
129 |
|
130 |
Returns:
|
131 |
+
str: The full path to the specified resource.
|
132 |
"""
|
133 |
+
|
134 |
# Get the current working directory (assumed to be inside 'code' folder)
|
135 |
current_dir = os.getcwd()
|
136 |
|
|
|
146 |
return full_path
|
147 |
|
148 |
|
149 |
+
def get_model_path(model_name: str) -> str:
|
150 |
"""
|
151 |
Get the path to the specified model folder.
|
152 |
|
|
|
156 |
Returns:
|
157 |
str: Absolute path to the specified model folder.
|
158 |
"""
|
159 |
+
|
160 |
# Directory of the current script
|
161 |
current_script_dir = os.path.dirname(os.path.abspath(__file__))
|
162 |
|
|
|
168 |
|
169 |
return model_path
|
170 |
|
171 |
+
def add_detected_objects_to_dataframe(df: pd.DataFrame, detector_type: str, image_directory: str, detector: object) -> pd.DataFrame:
|
172 |
+
"""
|
173 |
+
Adds a column to the DataFrame with detected objects for each image specified in the 'image_name' column.
|
174 |
+
Prints a message every 200 images processed.
|
175 |
|
176 |
+
Args:
|
177 |
+
df (pd.DataFrame): DataFrame containing a column 'image_name' with image filenames.
|
178 |
+
detector_type (str): The detection model to use ('detic' or 'yolov5').
|
179 |
+
image_directory (str): Path to the directory containing images.
|
180 |
+
detector (object): An instance of the ObjectDetector class.
|
181 |
|
182 |
+
Returns:
|
183 |
+
pd.DataFrame: The original DataFrame with an additional column 'detected_objects'.
|
184 |
+
"""
|
185 |
+
|
186 |
+
# Ensure 'image_name' column exists in the DataFrame
|
187 |
+
if 'image_name' not in df.columns:
|
188 |
+
raise ValueError("DataFrame must contain an 'image_name' column.")
|
189 |
+
|
190 |
+
detector.load_model(detector_type)
|
191 |
+
|
192 |
+
# Initialize a counter for images processed
|
193 |
+
images_processed = 0
|
194 |
+
|
195 |
+
# Function to detect objects for a given image filename
|
196 |
+
def detect_objects_for_image(image_name):
|
197 |
+
nonlocal images_processed # Use the nonlocal keyword to modify the images_processed variable
|
198 |
+
image_path = os.path.join(image_directory, image_name)
|
199 |
+
if os.path.exists(image_path):
|
200 |
+
|
201 |
+
image = detector.process_image(image_path)
|
202 |
+
detected_objects_str, _ = detector.detect_objects(image, 0.2)
|
203 |
+
images_processed += 1
|
204 |
+
|
205 |
+
# Print message every 2 images processed
|
206 |
+
if images_processed % 200 == 0:
|
207 |
+
print(f"Completed {images_processed} images detection")
|
208 |
+
|
209 |
+
return detected_objects_str
|
210 |
+
else:
|
211 |
+
images_processed += 1
|
212 |
+
return "Image not found"
|
213 |
+
|
214 |
+
# Apply the function to each row in the DataFrame
|
215 |
+
df[detector.model_name] = df['image_name'].apply(detect_objects_for_image)
|
216 |
+
|
217 |
+
return df
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
def free_gpu_resources() -> None:
|
222 |
"""
|
223 |
Clears GPU memory.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
None
|
227 |
"""
|
228 |
|
229 |
if torch.cuda.is_available():
|