m7mdal7aj commited on
Commit
70c6745
·
verified ·
1 Parent(s): 6d94c7b

Update my_model/tabs/dataset_analysis.py

Browse files
Files changed (1) hide show
  1. my_model/tabs/dataset_analysis.py +3 -9
my_model/tabs/dataset_analysis.py CHANGED
@@ -38,8 +38,7 @@ class OKVQADatasetAnalyzer:
38
  'train_test'indicating whether to load training data, testing data, or both.
39
 
40
  The constructor initializes the paths, selects the dataset based on the choice, and loads the initial data by
41
- calling the `load_data` method.
42
- It also prepares structures for categorizing questions and storing the results.
43
  """
44
 
45
  self.train_file_path = train_file_path
@@ -160,6 +159,7 @@ class OKVQADatasetAnalyzer:
160
  # Display the chart in Streamlit
161
  st.altair_chart(chart, use_container_width=True)
162
 
 
163
  def plot_bar_chart(self, df: pd.DataFrame, category_col: str, value_col: str, chart_title: str) -> None:
164
  """
165
  Plots an interactive bar chart using Altair and Streamlit.
@@ -217,7 +217,6 @@ class OKVQADatasetAnalyzer:
217
  st.altair_chart(chart, use_container_width=True)
218
 
219
 
220
-
221
  def export_to_csv(self, qs_filename: str, question_types_filename: str) -> None:
222
  """
223
  Exports the categorized questions and their counts to two separate CSV files.
@@ -246,8 +245,6 @@ class OKVQADatasetAnalyzer:
246
  writer.writerow([q_type, count])
247
 
248
 
249
-
250
-
251
  def run_dataset_analyzer() -> None:
252
  """
253
  Executes the dataset analysis process and displays the results using Streamlit.
@@ -326,7 +323,4 @@ def run_dataset_analyzer() -> None:
326
  with st.expander("Show Dataset Samples"):
327
  n = random.randint(1,len(train_data)-10)
328
  # Displaying 10 random samples.
329
- st.write(train_data[n:n+10])
330
-
331
-
332
-
 
38
  'train_test'indicating whether to load training data, testing data, or both.
39
 
40
  The constructor initializes the paths, selects the dataset based on the choice, and loads the initial data by
41
+ calling the `load_data` method. It also prepares structures for categorizing questions and storing the results.
 
42
  """
43
 
44
  self.train_file_path = train_file_path
 
159
  # Display the chart in Streamlit
160
  st.altair_chart(chart, use_container_width=True)
161
 
162
+
163
  def plot_bar_chart(self, df: pd.DataFrame, category_col: str, value_col: str, chart_title: str) -> None:
164
  """
165
  Plots an interactive bar chart using Altair and Streamlit.
 
217
  st.altair_chart(chart, use_container_width=True)
218
 
219
 
 
220
  def export_to_csv(self, qs_filename: str, question_types_filename: str) -> None:
221
  """
222
  Exports the categorized questions and their counts to two separate CSV files.
 
245
  writer.writerow([q_type, count])
246
 
247
 
 
 
248
  def run_dataset_analyzer() -> None:
249
  """
250
  Executes the dataset analysis process and displays the results using Streamlit.
 
323
  with st.expander("Show Dataset Samples"):
324
  n = random.randint(1,len(train_data)-10)
325
  # Displaying 10 random samples.
326
+ st.write(train_data[n:n+10])