Spaces:
Running
Running
Update my_model/tabs/run_inference.py
Browse files- my_model/tabs/run_inference.py +73 -66
my_model/tabs/run_inference.py
CHANGED
@@ -17,14 +17,17 @@ from my_model.state_manager import StateManager
|
|
17 |
from my_model.config import inference_config as config
|
18 |
|
19 |
|
|
|
20 |
class InferenceRunner(StateManager):
|
21 |
"""
|
22 |
-
Manages the user interface and interactions for running inference using the Streamlit-based Knowledge-Based Visual
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
Inherits from the StateManager class.
|
26 |
"""
|
27 |
-
|
28 |
def __init__(self) -> None:
|
29 |
"""
|
30 |
Initializes the InferenceRunner instance, setting up the necessary state.
|
@@ -32,7 +35,6 @@ class InferenceRunner(StateManager):
|
|
32 |
|
33 |
super().__init__()
|
34 |
|
35 |
-
|
36 |
def answer_question(self, caption: str, detected_objects_str: str, question: str) -> Tuple[str, int]:
|
37 |
"""
|
38 |
Generates an answer to a user's question based on the image's caption and detected objects.
|
@@ -45,14 +47,13 @@ class InferenceRunner(StateManager):
|
|
45 |
Returns:
|
46 |
Tuple[str, int]: A tuple containing the answer to the question and the prompt length.
|
47 |
"""
|
48 |
-
|
49 |
free_gpu_resources()
|
50 |
answer = st.session_state.kbvqa.generate_answer(question, caption, detected_objects_str)
|
51 |
-
prompt_length
|
52 |
free_gpu_resources()
|
53 |
return answer, prompt_length
|
54 |
|
55 |
-
|
56 |
def display_sample_images(self) -> None:
|
57 |
"""
|
58 |
Displays sample images as clickable thumbnails for the user to select.
|
@@ -60,7 +61,7 @@ class InferenceRunner(StateManager):
|
|
60 |
Returns:
|
61 |
None
|
62 |
"""
|
63 |
-
|
64 |
self.col1.write("Choose from sample images:")
|
65 |
cols = self.col1.columns(len(config.SAMPLE_IMAGES))
|
66 |
for idx, sample_image_path in enumerate(config.SAMPLE_IMAGES):
|
@@ -68,10 +69,9 @@ class InferenceRunner(StateManager):
|
|
68 |
image = Image.open(sample_image_path)
|
69 |
image_for_display = self.resize_image(sample_image_path, 80, 80)
|
70 |
st.image(image_for_display)
|
71 |
-
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx+1}'):
|
72 |
self.process_new_image(sample_image_path, image)
|
73 |
|
74 |
-
|
75 |
def handle_image_upload(self) -> None:
|
76 |
"""
|
77 |
Provides an image uploader widget for the user to upload their own images.
|
@@ -79,13 +79,13 @@ class InferenceRunner(StateManager):
|
|
79 |
Returns:
|
80 |
None
|
81 |
"""
|
82 |
-
|
83 |
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
|
84 |
if uploaded_image is not None:
|
85 |
self.process_new_image(uploaded_image.name, Image.open(uploaded_image))
|
86 |
-
|
87 |
|
88 |
-
def display_image_and_analysis(self, image_key: str, image_data: Dict, nested_col21: DeltaGenerator,
|
|
|
89 |
"""
|
90 |
Displays the uploaded or selected image and provides an option to analyze the image.
|
91 |
|
@@ -94,15 +94,14 @@ class InferenceRunner(StateManager):
|
|
94 |
image_data (Dict): Data associated with the image.
|
95 |
nested_col21 (DeltaGenerator): Column for displaying the image.
|
96 |
nested_col22 (DeltaGenerator): Column for displaying the analysis button.
|
97 |
-
|
98 |
Returns:
|
99 |
None
|
100 |
"""
|
101 |
-
|
102 |
image_for_display = self.resize_image(image_data['image'], 600)
|
103 |
nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
|
104 |
self.handle_analysis_button(image_key, image_data, nested_col22)
|
105 |
-
|
106 |
|
107 |
def handle_analysis_button(self, image_key: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
|
108 |
"""
|
@@ -112,22 +111,23 @@ class InferenceRunner(StateManager):
|
|
112 |
image_key (str): Unique key identifying the image.
|
113 |
image_data (Dict): Data associated with the image.
|
114 |
nested_col22 (DeltaGenerator): Column for displaying the analysis button.
|
115 |
-
|
116 |
Returns:
|
117 |
None
|
118 |
"""
|
119 |
-
|
120 |
if not image_data['analysis_done'] or self.settings_changed or self.confidance_change:
|
121 |
nested_col22.text("Please click 'Analyze Image'..")
|
122 |
-
analyze_button_key = f'analyze_{image_key}_{st.session_state.detection_model}_
|
|
|
123 |
with nested_col22:
|
124 |
-
if st.button('Analyze Image', key=analyze_button_key, on_click=self.disable_widgets,
|
|
|
125 |
with st.spinner('Analyzing the image...'):
|
126 |
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'])
|
127 |
self.update_image_data(image_key, caption, detected_objects_str, True)
|
128 |
st.session_state['loading_in_progress'] = False
|
129 |
|
130 |
-
|
131 |
def handle_question_answering(self, image_key: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
|
132 |
"""
|
133 |
Manages the question-answering interface for each image.
|
@@ -136,19 +136,19 @@ class InferenceRunner(StateManager):
|
|
136 |
image_key (str): Unique key identifying the image.
|
137 |
image_data (Dict): Data associated with the image.
|
138 |
nested_col22 (DeltaGenerator): Column for displaying the question-answering interface.
|
139 |
-
|
140 |
Returns:
|
141 |
None
|
142 |
"""
|
143 |
-
|
144 |
if image_data['analysis_done']:
|
145 |
self.display_question_answering_interface(image_key, image_data, nested_col22)
|
146 |
|
147 |
if self.settings_changed or self.confidance_change:
|
148 |
nested_col22.warning("Confidence level changed, please click 'Analyze Image' each time you change it.")
|
149 |
|
150 |
-
|
151 |
-
|
152 |
"""
|
153 |
Displays the interface for question answering, including sample questions and a custom question input.
|
154 |
|
@@ -156,31 +156,33 @@ class InferenceRunner(StateManager):
|
|
156 |
image_key (str): Unique key identifying the image.
|
157 |
image_data (Dict): Data associated with the image.
|
158 |
nested_col22 (DeltaGenerator): The column where the interface will be displayed.
|
159 |
-
|
160 |
Returns:
|
161 |
None
|
162 |
"""
|
163 |
-
|
164 |
sample_questions = config.SAMPLE_QUESTIONS.get(image_key, [])
|
165 |
-
selected_question = nested_col22.selectbox("Select a sample question or type your own:",
|
166 |
-
|
|
|
|
|
167 |
# Display custom question input only if "Custom question..." is selected
|
168 |
question = selected_question
|
169 |
if selected_question == "Custom question...":
|
170 |
custom_question = nested_col22.text_input("Or ask your own question:", key=f'custom_question_{image_key}')
|
171 |
question = custom_question
|
172 |
-
|
173 |
self.process_question(image_key, question, image_data, nested_col22)
|
174 |
-
|
175 |
qa_history = image_data.get('qa_history', [])
|
176 |
for num, (q, a, p) in enumerate(qa_history):
|
177 |
-
nested_col22.text(f"Q{num+1}: {q}\nA{num+1}: {a}\nPrompt Length: {p}\n")
|
178 |
-
|
179 |
|
180 |
def process_question(self, image_key: str, question: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
|
181 |
"""
|
182 |
Processes the user's question, generates an answer, and updates the question-answer history.
|
183 |
-
This method checks if the question is new or if settings have changed, and if so, generates an answer using the
|
|
|
184 |
It then updates the question-answer history for the image.
|
185 |
|
186 |
Args:
|
@@ -188,73 +190,76 @@ class InferenceRunner(StateManager):
|
|
188 |
question (str): The question asked by the user.
|
189 |
image_data (Dict): Data associated with the image.
|
190 |
nested_col22 (DeltaGenerator): The column where the answer will be displayed.
|
191 |
-
|
192 |
Returns:
|
193 |
None
|
194 |
"""
|
195 |
-
|
196 |
qa_history = image_data.get('qa_history', [])
|
197 |
-
if question and (
|
|
|
198 |
if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
|
199 |
-
answer, prompt_length = self.answer_question(image_data['caption'], image_data['detected_objects_str'],
|
|
|
200 |
self.add_to_qa_history(image_key, question, answer, prompt_length)
|
201 |
-
|
202 |
|
203 |
def image_qa_app(self) -> None:
|
204 |
"""
|
205 |
Main application interface for image-based question answering.
|
206 |
|
207 |
-
This method orchestrates the display of sample images, handles image uploads, and facilitates the
|
208 |
-
|
209 |
-
|
|
|
|
|
210 |
Returns:
|
211 |
None
|
212 |
"""
|
213 |
-
|
214 |
self.display_sample_images()
|
215 |
self.handle_image_upload()
|
216 |
-
#self.display_session_state(self.col1)
|
217 |
with self.col2:
|
218 |
for image_key, image_data in self.get_images_data().items():
|
219 |
with st.container():
|
220 |
nested_col21, nested_col22 = st.columns([0.65, 0.35])
|
221 |
self.display_image_and_analysis(image_key, image_data, nested_col21, nested_col22)
|
222 |
self.handle_question_answering(image_key, image_data, nested_col22)
|
223 |
-
|
224 |
-
|
225 |
def run_inference(self) -> None:
|
226 |
"""
|
227 |
-
Sets up widgets and manages the inference process, including model loading and reloading, based on user
|
|
|
228 |
|
229 |
This method orchestrates the overall flow of the inference process.
|
230 |
-
|
231 |
Returns:
|
232 |
None
|
233 |
"""
|
234 |
|
235 |
self.set_up_widgets() # Inherent from the StateManager Class
|
236 |
-
|
237 |
load_fine_tuned_model = False
|
238 |
fine_tuned_model_already_loaded = False
|
239 |
reload_detection_model = False
|
240 |
force_reload_full_model = False
|
241 |
-
|
242 |
if self.is_model_loaded and self.settings_changed:
|
243 |
self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
|
244 |
self.update_prev_state()
|
245 |
st.session_state.button_label = (
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
252 |
-
|
253 |
with self.col1:
|
254 |
if st.session_state.method == "7b-Fine-Tuned Model" or st.session_state.method == "13b-Fine-Tuned Model":
|
255 |
with st.container():
|
256 |
nested_col11, nested_col12 = st.columns([0.5, 0.5])
|
257 |
-
if nested_col11.button(st.session_state.button_label, on_click=self.disable_widgets,
|
|
|
258 |
if st.session_state.button_label == "Load Model":
|
259 |
if self.is_model_loaded:
|
260 |
free_gpu_resources()
|
@@ -263,13 +268,14 @@ class InferenceRunner(StateManager):
|
|
263 |
load_fine_tuned_model = True
|
264 |
else:
|
265 |
reload_detection_model = True
|
266 |
-
if nested_col12.button("Force Reload", on_click=self.disable_widgets,
|
|
|
267 |
force_reload_full_model = True
|
268 |
if load_fine_tuned_model:
|
269 |
-
t1=time.time()
|
270 |
free_gpu_resources()
|
271 |
self.load_model()
|
272 |
-
st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
|
273 |
st.session_state['loading_in_progress'] = False
|
274 |
elif fine_tuned_model_already_loaded:
|
275 |
free_gpu_resources()
|
@@ -281,16 +287,17 @@ class InferenceRunner(StateManager):
|
|
281 |
st.session_state['loading_in_progress'] = False
|
282 |
elif force_reload_full_model:
|
283 |
free_gpu_resources()
|
284 |
-
t1=time.time()
|
285 |
self.force_reload_model()
|
286 |
-
st.session_state['time_taken_to_load_model'] = int(time.time()-t1)
|
287 |
st.session_state['loading_in_progress'] = False
|
288 |
st.session_state['model_loaded'] = True
|
289 |
elif st.session_state.method == "Vision-Language Embeddings Alignment":
|
290 |
-
self.col1.warning(
|
|
|
|
|
291 |
if self.is_model_loaded:
|
292 |
free_gpu_resources()
|
293 |
st.session_state['loading_in_progress'] = False
|
294 |
-
self.image_qa_app()
|
295 |
-
|
296 |
|
|
|
17 |
from my_model.config import inference_config as config
|
18 |
|
19 |
|
20 |
+
|
21 |
class InferenceRunner(StateManager):
|
22 |
"""
|
23 |
+
Manages the user interface and interactions for running inference using the Streamlit-based Knowledge-Based Visual
|
24 |
+
Question Answering (KBVQA) application.
|
25 |
+
|
26 |
+
This class handles image uploads, displays sample images, and facilitates the question-answering process using the
|
27 |
+
KBVQA model.
|
28 |
Inherits from the StateManager class.
|
29 |
"""
|
30 |
+
|
31 |
def __init__(self) -> None:
|
32 |
"""
|
33 |
Initializes the InferenceRunner instance, setting up the necessary state.
|
|
|
35 |
|
36 |
super().__init__()
|
37 |
|
|
|
38 |
def answer_question(self, caption: str, detected_objects_str: str, question: str) -> Tuple[str, int]:
|
39 |
"""
|
40 |
Generates an answer to a user's question based on the image's caption and detected objects.
|
|
|
47 |
Returns:
|
48 |
Tuple[str, int]: A tuple containing the answer to the question and the prompt length.
|
49 |
"""
|
50 |
+
|
51 |
free_gpu_resources()
|
52 |
answer = st.session_state.kbvqa.generate_answer(question, caption, detected_objects_str)
|
53 |
+
prompt_length = st.session_state.kbvqa.current_prompt_length
|
54 |
free_gpu_resources()
|
55 |
return answer, prompt_length
|
56 |
|
|
|
57 |
def display_sample_images(self) -> None:
|
58 |
"""
|
59 |
Displays sample images as clickable thumbnails for the user to select.
|
|
|
61 |
Returns:
|
62 |
None
|
63 |
"""
|
64 |
+
|
65 |
self.col1.write("Choose from sample images:")
|
66 |
cols = self.col1.columns(len(config.SAMPLE_IMAGES))
|
67 |
for idx, sample_image_path in enumerate(config.SAMPLE_IMAGES):
|
|
|
69 |
image = Image.open(sample_image_path)
|
70 |
image_for_display = self.resize_image(sample_image_path, 80, 80)
|
71 |
st.image(image_for_display)
|
72 |
+
if st.button(f'Select Sample Image {idx + 1}', key=f'sample_{idx + 1}'):
|
73 |
self.process_new_image(sample_image_path, image)
|
74 |
|
|
|
75 |
def handle_image_upload(self) -> None:
|
76 |
"""
|
77 |
Provides an image uploader widget for the user to upload their own images.
|
|
|
79 |
Returns:
|
80 |
None
|
81 |
"""
|
82 |
+
|
83 |
uploaded_image = self.col1.file_uploader("Or upload an Image", type=["png", "jpg", "jpeg"])
|
84 |
if uploaded_image is not None:
|
85 |
self.process_new_image(uploaded_image.name, Image.open(uploaded_image))
|
|
|
86 |
|
87 |
+
def display_image_and_analysis(self, image_key: str, image_data: Dict, nested_col21: DeltaGenerator,
|
88 |
+
nested_col22: DeltaGenerator) -> None:
|
89 |
"""
|
90 |
Displays the uploaded or selected image and provides an option to analyze the image.
|
91 |
|
|
|
94 |
image_data (Dict): Data associated with the image.
|
95 |
nested_col21 (DeltaGenerator): Column for displaying the image.
|
96 |
nested_col22 (DeltaGenerator): Column for displaying the analysis button.
|
97 |
+
|
98 |
Returns:
|
99 |
None
|
100 |
"""
|
101 |
+
|
102 |
image_for_display = self.resize_image(image_data['image'], 600)
|
103 |
nested_col21.image(image_for_display, caption=f'Uploaded Image: {image_key[-11:]}')
|
104 |
self.handle_analysis_button(image_key, image_data, nested_col22)
|
|
|
105 |
|
106 |
def handle_analysis_button(self, image_key: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
|
107 |
"""
|
|
|
111 |
image_key (str): Unique key identifying the image.
|
112 |
image_data (Dict): Data associated with the image.
|
113 |
nested_col22 (DeltaGenerator): Column for displaying the analysis button.
|
114 |
+
|
115 |
Returns:
|
116 |
None
|
117 |
"""
|
118 |
+
|
119 |
if not image_data['analysis_done'] or self.settings_changed or self.confidance_change:
|
120 |
nested_col22.text("Please click 'Analyze Image'..")
|
121 |
+
analyze_button_key = f'analyze_{image_key}_{st.session_state.detection_model}_' \
|
122 |
+
f'{st.session_state.confidence_level}'
|
123 |
with nested_col22:
|
124 |
+
if st.button('Analyze Image', key=analyze_button_key, on_click=self.disable_widgets,
|
125 |
+
disabled=self.is_widget_disabled):
|
126 |
with st.spinner('Analyzing the image...'):
|
127 |
caption, detected_objects_str, image_with_boxes = self.analyze_image(image_data['image'])
|
128 |
self.update_image_data(image_key, caption, detected_objects_str, True)
|
129 |
st.session_state['loading_in_progress'] = False
|
130 |
|
|
|
131 |
def handle_question_answering(self, image_key: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
|
132 |
"""
|
133 |
Manages the question-answering interface for each image.
|
|
|
136 |
image_key (str): Unique key identifying the image.
|
137 |
image_data (Dict): Data associated with the image.
|
138 |
nested_col22 (DeltaGenerator): Column for displaying the question-answering interface.
|
139 |
+
|
140 |
Returns:
|
141 |
None
|
142 |
"""
|
143 |
+
|
144 |
if image_data['analysis_done']:
|
145 |
self.display_question_answering_interface(image_key, image_data, nested_col22)
|
146 |
|
147 |
if self.settings_changed or self.confidance_change:
|
148 |
nested_col22.warning("Confidence level changed, please click 'Analyze Image' each time you change it.")
|
149 |
|
150 |
+
def display_question_answering_interface(self, image_key: str, image_data: Dict,
|
151 |
+
nested_col22: DeltaGenerator) -> None:
|
152 |
"""
|
153 |
Displays the interface for question answering, including sample questions and a custom question input.
|
154 |
|
|
|
156 |
image_key (str): Unique key identifying the image.
|
157 |
image_data (Dict): Data associated with the image.
|
158 |
nested_col22 (DeltaGenerator): The column where the interface will be displayed.
|
159 |
+
|
160 |
Returns:
|
161 |
None
|
162 |
"""
|
163 |
+
|
164 |
sample_questions = config.SAMPLE_QUESTIONS.get(image_key, [])
|
165 |
+
selected_question = nested_col22.selectbox("Select a sample question or type your own:",
|
166 |
+
["Custom question..."] + sample_questions,
|
167 |
+
key=f'sample_question_{image_key}')
|
168 |
+
|
169 |
# Display custom question input only if "Custom question..." is selected
|
170 |
question = selected_question
|
171 |
if selected_question == "Custom question...":
|
172 |
custom_question = nested_col22.text_input("Or ask your own question:", key=f'custom_question_{image_key}')
|
173 |
question = custom_question
|
174 |
+
|
175 |
self.process_question(image_key, question, image_data, nested_col22)
|
176 |
+
|
177 |
qa_history = image_data.get('qa_history', [])
|
178 |
for num, (q, a, p) in enumerate(qa_history):
|
179 |
+
nested_col22.text(f"Q{num + 1}: {q}\nA{num + 1}: {a}\nPrompt Length: {p}\n")
|
|
|
180 |
|
181 |
def process_question(self, image_key: str, question: str, image_data: Dict, nested_col22: DeltaGenerator) -> None:
|
182 |
"""
|
183 |
Processes the user's question, generates an answer, and updates the question-answer history.
|
184 |
+
This method checks if the question is new or if settings have changed, and if so, generates an answer using the
|
185 |
+
KBVQA model.
|
186 |
It then updates the question-answer history for the image.
|
187 |
|
188 |
Args:
|
|
|
190 |
question (str): The question asked by the user.
|
191 |
image_data (Dict): Data associated with the image.
|
192 |
nested_col22 (DeltaGenerator): The column where the answer will be displayed.
|
193 |
+
|
194 |
Returns:
|
195 |
None
|
196 |
"""
|
197 |
+
|
198 |
qa_history = image_data.get('qa_history', [])
|
199 |
+
if question and (
|
200 |
+
question not in [q for q, _, _ in qa_history] or self.settings_changed or self.confidance_change):
|
201 |
if nested_col22.button('Get Answer', key=f'answer_{image_key}', disabled=self.is_widget_disabled):
|
202 |
+
answer, prompt_length = self.answer_question(image_data['caption'], image_data['detected_objects_str'],
|
203 |
+
question)
|
204 |
self.add_to_qa_history(image_key, question, answer, prompt_length)
|
|
|
205 |
|
206 |
def image_qa_app(self) -> None:
|
207 |
"""
|
208 |
Main application interface for image-based question answering.
|
209 |
|
210 |
+
This method orchestrates the display of sample images, handles image uploads, and facilitates the
|
211 |
+
question-answering process.
|
212 |
+
It iterates through each image in the session state, displaying the image and providing interfaces for image
|
213 |
+
analysis and question answering.
|
214 |
+
|
215 |
Returns:
|
216 |
None
|
217 |
"""
|
218 |
+
|
219 |
self.display_sample_images()
|
220 |
self.handle_image_upload()
|
221 |
+
# self.display_session_state(self.col1)
|
222 |
with self.col2:
|
223 |
for image_key, image_data in self.get_images_data().items():
|
224 |
with st.container():
|
225 |
nested_col21, nested_col22 = st.columns([0.65, 0.35])
|
226 |
self.display_image_and_analysis(image_key, image_data, nested_col21, nested_col22)
|
227 |
self.handle_question_answering(image_key, image_data, nested_col22)
|
228 |
+
|
|
|
229 |
def run_inference(self) -> None:
|
230 |
"""
|
231 |
+
Sets up widgets and manages the inference process, including model loading and reloading, based on user
|
232 |
+
interactions.
|
233 |
|
234 |
This method orchestrates the overall flow of the inference process.
|
235 |
+
|
236 |
Returns:
|
237 |
None
|
238 |
"""
|
239 |
|
240 |
self.set_up_widgets() # Inherent from the StateManager Class
|
241 |
+
|
242 |
load_fine_tuned_model = False
|
243 |
fine_tuned_model_already_loaded = False
|
244 |
reload_detection_model = False
|
245 |
force_reload_full_model = False
|
246 |
+
|
247 |
if self.is_model_loaded and self.settings_changed:
|
248 |
self.col1.warning("Model settings have changed, please reload the model, this will take a second .. ")
|
249 |
self.update_prev_state()
|
250 |
st.session_state.button_label = (
|
251 |
+
"Reload Model" if (self.is_model_loaded and
|
252 |
+
st.session_state.kbvqa.detection_model != st.session_state['detection_model']) or
|
253 |
+
self.settings_changed())
|
254 |
+
else "Load Model"
|
255 |
+
)
|
256 |
|
|
|
257 |
with self.col1:
|
258 |
if st.session_state.method == "7b-Fine-Tuned Model" or st.session_state.method == "13b-Fine-Tuned Model":
|
259 |
with st.container():
|
260 |
nested_col11, nested_col12 = st.columns([0.5, 0.5])
|
261 |
+
if nested_col11.button(st.session_state.button_label, on_click=self.disable_widgets,
|
262 |
+
disabled=self.is_widget_disabled):
|
263 |
if st.session_state.button_label == "Load Model":
|
264 |
if self.is_model_loaded:
|
265 |
free_gpu_resources()
|
|
|
268 |
load_fine_tuned_model = True
|
269 |
else:
|
270 |
reload_detection_model = True
|
271 |
+
if nested_col12.button("Force Reload", on_click=self.disable_widgets,
|
272 |
+
disabled=self.is_widget_disabled):
|
273 |
force_reload_full_model = True
|
274 |
if load_fine_tuned_model:
|
275 |
+
t1 = time.time()
|
276 |
free_gpu_resources()
|
277 |
self.load_model()
|
278 |
+
st.session_state['time_taken_to_load_model'] = int(time.time() - t1)
|
279 |
st.session_state['loading_in_progress'] = False
|
280 |
elif fine_tuned_model_already_loaded:
|
281 |
free_gpu_resources()
|
|
|
287 |
st.session_state['loading_in_progress'] = False
|
288 |
elif force_reload_full_model:
|
289 |
free_gpu_resources()
|
290 |
+
t1 = time.time()
|
291 |
self.force_reload_model()
|
292 |
+
st.session_state['time_taken_to_load_model'] = int(time.time() - t1)
|
293 |
st.session_state['loading_in_progress'] = False
|
294 |
st.session_state['model_loaded'] = True
|
295 |
elif st.session_state.method == "Vision-Language Embeddings Alignment":
|
296 |
+
self.col1.warning(
|
297 |
+
f'Model using {st.session_state.method} is desgined but requires large scale data and multiple '
|
298 |
+
f'high-end GPUs, implementation will be explored in the future.')
|
299 |
if self.is_model_loaded:
|
300 |
free_gpu_resources()
|
301 |
st.session_state['loading_in_progress'] = False
|
302 |
+
self.image_qa_app() # this is the main Q/A Application
|
|
|
303 |
|