m7mdal7aj commited on
Commit
c7925f2
1 Parent(s): 6471610

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -45
app.py DELETED
@@ -1,45 +0,0 @@
1
- import streamlit as st
2
- import torch
3
-
4
- from transformers import Blip2Processor, Blip2ForConditionalGeneration
5
-
6
-
7
-
8
-
9
- processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
10
- model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b", load_in_8bit=True,torch_dtype=torch.float16, device_map="auto")
11
-
12
- return, model, processor
13
-
14
-
15
-
16
- def answer_question(image, question, model, processor):
17
-
18
-
19
- image = Image.open(image).convert('RGB')
20
-
21
- inputs = processor(image, question, return_tensors="pt").to("cuda", torch.float16)
22
-
23
- out = model.generate(**inputs, max_length=200, min_length=20, num_beams=1)
24
-
25
- answer = processor.decode(out[0], skip_special_tokens=True).strip()
26
- return answer
27
-
28
- st.title("Image Question Answering")
29
-
30
- # File uploader for the image
31
- image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"])
32
-
33
- # Text input for the question
34
- question = st.text_input("Enter your question about the image:")
35
-
36
- if st.button("Get Answer"):
37
- if image is not None and question:
38
- # Display the image
39
- st.image(image, use_column_width=True)
40
- # Get and display the answer
41
- model, processor = load_caption_model()
42
- answer = answer_question(image, question, model, processor)
43
- st.write(answer)
44
- else:
45
- st.write("Please upload an image and enter a question.")