m7mdal7aj commited on
Commit
dab7e6b
·
verified ·
1 Parent(s): 1395bd5

Rename my_model/tabs/finetuning_evaluation.py to my_model/tabs/results.py

Browse files
my_model/tabs/finetuning_evaluation.py DELETED
@@ -1,89 +0,0 @@
1
- import pandas as pd
2
- from fuzzywuzzy import fuzz
3
- from collections import Counter
4
- from nltk.stem import PorterStemmer
5
- from ast import literal_eval
6
- from typing import Union, List
7
- import streamlit as st
8
-
9
- class KBVQAEvaluator:
10
- def __init__(self):
11
- """
12
- Initialize the VQA Processor with the dataset and configuration settings.
13
- """
14
- self.data_path = 'Files/evaluation_results_final.xlsx'
15
- self.use_fuzzy = False
16
- self.stemmer = PorterStemmer()
17
- self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores")
18
- self.df = pd.read_excel(self.data_path, sheet_name="Main Data")
19
- self.vqa_scores = {}
20
- self.exact_match_scores = {}
21
-
22
- def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]:
23
- """
24
- Apply Porter Stemmer to either a single string or a list of strings.
25
- """
26
- if isinstance(answers, list):
27
- return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers]
28
- else:
29
- words = answers.split()
30
- return " ".join(self.stemmer.stem(word.strip()) for word in words)
31
-
32
- def calculate_vqa_score(self, ground_truths, model_answer):
33
- """
34
- Calculate VQA score based on the number of matching answers, with optional fuzzy matching.
35
- """
36
- if self.use_fuzzy:
37
- fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths)
38
- return min(fuzzy_matches / 3, 1)
39
- else:
40
- count = Counter(ground_truths)
41
- return min(count.get(model_answer, 0) / 3, 1)
42
-
43
- def calculate_exact_match_score(self, ground_truths, model_answer):
44
- """
45
- Calculate Exact Match score, with optional fuzzy matching.
46
- """
47
- if self.use_fuzzy:
48
- return int(any(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths))
49
- else:
50
- return int(model_answer in ground_truths)
51
-
52
- def evaluate(self):
53
- """
54
- Process the DataFrame: stem answers, calculate scores, and store results.
55
- """
56
- self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers)
57
- model_configurations = ['caption+detic', 'caption+yolov5', 'only_caption', 'only_detic', 'only_yolov5']
58
- model_names = ['13b', '7b']
59
-
60
- for name in model_names:
61
- for config in model_configurations:
62
- full_config = f'{name}_{config}'
63
- self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers)
64
-
65
- self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1)
66
- self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1)
67
-
68
- self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2)
69
- self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2)
70
-
71
- def save_results(self):
72
- # Create a DataFrame for the scores
73
- scores_data = {
74
- 'Model Configuration': list(self.vqa_scores.keys()),
75
- 'VQA Score': list(self.vqa_scores.values()),
76
- 'Exact Match Score': list(self.exact_match_scores.values())
77
- }
78
- scores_df = pd.DataFrame(scores_data)
79
-
80
- # Saving the scores DataFrame to an Excel file
81
- with pd.ExcelWriter('evaluation_results_final.xlsx', engine='openpyxl', mode='w') as writer:
82
- scores_df.to_excel(writer, sheet_name='Scores', index=False)
83
-
84
- def run_evaluator(self):
85
- #evaluator.evaluate()
86
- st.table(self.scores_df)
87
- st.dataframe(self.scores_df, width=900, height=500)
88
- #print(evaluator.exact_match_scores)
89
- #evaluator.save_results()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
my_model/tabs/results.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ from fuzzywuzzy import fuzz
3
+ from collections import Counter
4
+ from nltk.stem import PorterStemmer
5
+ from ast import literal_eval
6
+ from typing import Union, List
7
+ import streamlit as st
8
+ from my_model.results.evaluation import KBVQAEvaluator
9
+
10
+ class ResultDemonestrator(KBVQAEvaluator):
11
+
12
+ def __init__(self):
13
+ pass
14
+