import streamlit as st import streamlit.components.v1 as components import pandas as pd from my_model.tabs.run_inference import InferenceRunner from my_model.tabs.results import run_demo from my_model.tabs.home import run_home from my_model.state_manager import StateManager from my_model.tabs.dataset_analysis import run_dataset_analyzer class UIManager(): """Manages the user interface for the Streamlit application.""" def __init__(self): """Initializes the UIManager with predefined tabs.""" self.tabs = { "Home": self.display_home, "Dataset Analysis": self.display_dataset_analysis, "Results": self.display_results, "Run Inference": self.display_run_inference, "Dissertation Report": self.display_dissertation_report, "Code": self.display_code } state_manager = StateManager() state_manager.initialize_state() def add_tab(self, tab_name, display_function): """Adds a new tab to the UI.""" self.tabs[tab_name] = display_function def display_sidebar(self): """Displays the sidebar for navigation.""" st.sidebar.title("Navigation") selection = st.sidebar.radio("Go to", list(self.tabs.keys()), disabled=st.session_state['loading_in_progress']) st.sidebar.image("Files/mm.jpeg", use_column_width=True) st.sidebar.markdown("**[Mohammed H AlHaj](https://www.linkedin.com/in/m7mdal7aj)**") return selection def display_selected_page(self, selection): """Displays the selected page based on user's choice.""" if selection in self.tabs: self.tabs[selection]() def display_home(self): """Displays the Home page of the application.""" run_home() def display_dataset_analysis(self): """Displays the Dataset Analysis page.""" st.title("Dataset Analysis") run_dataset_analyzer() def display_results(self): """Displays Evaluation Results page.""" st.title("Evaluation Results & Analyses") st.write("This page demonstrates the model evaluation results and analyses in an interactive way.") st.write("\n") run_demo() def display_run_inference(self): """Displays the Run Inference page.""" st.title("Run Inference") st.write("""Please note that this is not a general purpose model, it is specifically trained on [OK-VQA Dataset](https://okvqa.allenai.org/) and desgined to give short and direct answers to the given questions about the given image.\n""") inference_runner = InferenceRunner() inference_runner.run_inference() def display_dissertation_report(self): """Displays the Dissertation Report page.""" st.title("Dissertation Report") st.write("Click the link below to view the PDF.") # Error handling for file access should be considered here st.download_button( label="Download PDF", data=open("Files/Dissertation Report.pdf", "rb"), file_name="example.pdf", mime="application/octet-stream" ) def display_code(self): """Displays the Code page with a link to the project's code repository.""" st.title("Code") st.markdown("You can view the code for this project on HuggingFace Space files page.") st.markdown("[View Code](https://huggingface.co/spaces/m7mdal7aj/Mohammed_Alhaj_KB-VQA/tree/main)", unsafe_allow_html=True) def display_placeholder(self): """Displays a placeholder for future content.""" st.title("Stay Tuned") st.write("This is a Place Holder until the contents are uploaded.")