import pandas as pd from fuzzywuzzy import fuzz from collections import Counter from nltk.stem import PorterStemmer from ast import literal_eval from typing import Union, List import streamlit as st class KBVQAEvaluator: def __init__(self): """ Initialize the VQA Processor with the dataset and configuration settings. """ self.data_path = 'Files/evaluation_results_final.xlsx' self.use_fuzzy = False self.stemmer = PorterStemmer() self.scores_df = pd.read_excel(self.data_path, sheet_name="Scores") self.df = pd.read_excel(self.data_path, sheet_name="Main Data") self.vqa_scores = {} self.exact_match_scores = {} def stem_answers(self, answers: Union[str, List[str]]) -> Union[str, List[str]]: """ Apply Porter Stemmer to either a single string or a list of strings. """ if isinstance(answers, list): return [" ".join(self.stemmer.stem(word.strip()) for word in answer.split()) for answer in answers] else: words = answers.split() return " ".join(self.stemmer.stem(word.strip()) for word in words) def calculate_vqa_score(self, ground_truths, model_answer): """ Calculate VQA score based on the number of matching answers, with optional fuzzy matching. """ if self.use_fuzzy: fuzzy_matches = sum(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths) return min(fuzzy_matches / 3, 1) else: count = Counter(ground_truths) return min(count.get(model_answer, 0) / 3, 1) def calculate_exact_match_score(self, ground_truths, model_answer): """ Calculate Exact Match score, with optional fuzzy matching. """ if self.use_fuzzy: return int(any(fuzz.partial_ratio(model_answer, gt) >= 80 for gt in ground_truths)) else: return int(model_answer in ground_truths) def evaluate(self): """ Process the DataFrame: stem answers, calculate scores, and store results. """ self.df['raw_answers_stemmed'] = self.df['raw_answers'].apply(literal_eval).apply(self.stem_answers) model_configurations = ['caption+detic', 'caption+yolov5', 'only_caption', 'only_detic', 'only_yolov5'] model_names = ['13b', '7b'] for name in model_names: for config in model_configurations: full_config = f'{name}_{config}' self.df[f'{full_config}_stemmed'] = self.df[full_config].apply(self.stem_answers) self.df[f'vqa_score_{full_config}'] = self.df.apply(lambda x: self.calculate_vqa_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) self.df[f'exact_match_score_{full_config}'] = self.df.apply(lambda x: self.calculate_exact_match_score(x['raw_answers_stemmed'], x[f'{full_config}_stemmed']), axis=1) self.vqa_scores[full_config] = round(self.df[f'vqa_score_{full_config}'].mean()*100, 2) self.exact_match_scores[full_config] = round(self.df[f'exact_match_score_{full_config}'].mean()*100, 2) def save_results(self): # Create a DataFrame for the scores scores_data = { 'Model Configuration': list(self.vqa_scores.keys()), 'VQA Score': list(self.vqa_scores.values()), 'Exact Match Score': list(self.exact_match_scores.values()) } scores_df = pd.DataFrame(scores_data) # Saving the scores DataFrame to an Excel file with pd.ExcelWriter('evaluation_results_final.xlsx', engine='openpyxl', mode='w') as writer: scores_df.to_excel(writer, sheet_name='Scores', index=False) def run_evaluator(self): #evaluator.evaluate() st.table(self.scores_df) st.write(self.scores_df) #print(evaluator.exact_match_scores) #evaluator.save_results()