Spaces:
Build error
Build error
Update app.py
Browse filesadded spectral 2 first attempt
app.py
CHANGED
@@ -44,6 +44,16 @@ from pyalex import Works, Authors, Sources, Institutions, Concepts, Publishers,
|
|
44 |
from itertools import chain
|
45 |
from compress_pickle import load, dump
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def query_records(search_term):
|
48 |
def invert_abstract(inv_index):
|
49 |
if inv_index is not None:
|
@@ -67,6 +77,67 @@ def query_records(search_term):
|
|
67 |
|
68 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
def predict(text_input, progress=gr.Progress()):
|
71 |
|
72 |
# get data.
|
@@ -75,6 +146,24 @@ def predict(text_input, progress=gr.Progress()):
|
|
75 |
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
file_name = f"{datetime.utcnow().strftime('%s')}.html"
|
79 |
file_path = static_dir / file_name
|
80 |
print(file_path)
|
|
|
44 |
from itertools import chain
|
45 |
from compress_pickle import load, dump
|
46 |
|
47 |
+
|
48 |
+
|
49 |
+
from transformers import AutoTokenizer
|
50 |
+
from adapters import AutoAdapterModel
|
51 |
+
import torch
|
52 |
+
from tqdm import tqdm
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
def query_records(search_term):
|
58 |
def invert_abstract(inv_index):
|
59 |
if inv_index is not None:
|
|
|
77 |
|
78 |
|
79 |
|
80 |
+
################# Setting up the model for specter2 embeddings ###################
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda")
|
85 |
+
print(f"Using device: {device}")
|
86 |
+
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained('allenai/specter2_aug2023refresh_base')
|
88 |
+
model = AutoAdapterModel.from_pretrained('allenai/specter2_aug2023refresh_base')
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
def create_embeddings(texts_to_embedd):
|
93 |
+
# Set up the device
|
94 |
+
|
95 |
+
|
96 |
+
print(len(texts_to_embedd))
|
97 |
+
|
98 |
+
# Load the proximity adapter and activate it
|
99 |
+
model.load_adapter("allenai/specter2_aug2023refresh", source="hf", load_as="proximity", set_active=True)
|
100 |
+
model.set_active_adapters("proximity")
|
101 |
+
|
102 |
+
model.to(device)
|
103 |
+
|
104 |
+
def batch_generator(data, batch_size):
|
105 |
+
"""Yield consecutive batches of data."""
|
106 |
+
for i in range(0, len(data), batch_size):
|
107 |
+
yield data[i:i + batch_size]
|
108 |
+
|
109 |
+
@spaces.GPU(duration=120)
|
110 |
+
def encode_texts(texts, device, batch_size=16):
|
111 |
+
"""Process texts in batches and return their embeddings."""
|
112 |
+
model.eval()
|
113 |
+
with torch.no_grad():
|
114 |
+
all_embeddings = []
|
115 |
+
count = 0
|
116 |
+
for batch in tqdm(batch_generator(texts, batch_size)):
|
117 |
+
inputs = tokenizer(batch, padding=True, truncation=True, return_tensors="pt", max_length=512).to(device)
|
118 |
+
outputs = model(**inputs)
|
119 |
+
embeddings = outputs.last_hidden_state[:, 0, :] # Taking the [CLS] token representation
|
120 |
+
|
121 |
+
all_embeddings.append(embeddings.cpu()) # Move to CPU to free GPU memory
|
122 |
+
#torch.mps.empty_cache() # Clear cache to free up memory
|
123 |
+
if count == 100:
|
124 |
+
torch.mps.empty_cache()
|
125 |
+
count = 0
|
126 |
+
|
127 |
+
count +=1
|
128 |
+
|
129 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
130 |
+
return all_embeddings
|
131 |
+
|
132 |
+
# Concatenate title and abstract
|
133 |
+
embeddings = encode_texts(texts_to_embedd, device, batch_size=32).cpu().numpy() # Process texts in batches of 10
|
134 |
+
|
135 |
+
return embeddings
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
def predict(text_input, progress=gr.Progress()):
|
142 |
|
143 |
# get data.
|
|
|
146 |
|
147 |
|
148 |
|
149 |
+
texts_to_embedd = [title + tokenizer.sep_token + publication + tokenizer.sep_token + abstract for title, publication, abstract in zip(records_df['title'],records_df['parsed_publication'], records_df['abstract'])]
|
150 |
+
|
151 |
+
embeddings = create_embeddings(texts_to_embedd)
|
152 |
+
print(embeddings)
|
153 |
+
|
154 |
+
|
155 |
+
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
|
166 |
+
|
167 |
file_name = f"{datetime.utcnow().strftime('%s')}.html"
|
168 |
file_path = static_dir / file_name
|
169 |
print(file_path)
|