File size: 12,265 Bytes
1bed2ff 9085162 1bed2ff 582f651 1bed2ff b09acd6 1bed2ff 9085162 1bed2ff 9085162 1bed2ff 9085162 1bed2ff 97be6e9 1bed2ff 97be6e9 1bed2ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import streamlit as st
from transformers import pipeline
from audio_recorder_streamlit import audio_recorder
import numpy as np
from scipy.io import wavfile
from io import BytesIO
import openai
from transformers import SpeechT5Processor, SpeechT5HifiGan, SpeechT5ForTextToSpeech
from datasets import load_dataset
import torch
import os
import base64
import pandas as pd
from openai import OpenAI
st.set_page_config(layout='wide', page_title = "TalkGPT 🎤")
with open("style.css")as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html = True)
def add_bg(image_file):
with open(image_file, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
st.markdown(
f"""
<style>
.stApp {{
background-image: url(data:image/{"png"};base64,{encoded_string.decode()});
background-size: cover;}}
}}
</style>
""",
unsafe_allow_html=True
)
#add_bg("ai.png")
checkpoint_stt = "openai/whisper-small.en"
checkpoint_tts = "microsoft/speecht5_tts"
checkpoint_vocoder = "microsoft/speecht5_hifigan"
dataset_tts = "Matthijs/cmu-arctic-xvectors"
@st.cache_resource()
def models():
stt_model = pipeline("automatic-speech-recognition", model=checkpoint_stt)
processor = SpeechT5Processor.from_pretrained(checkpoint_tts)
tts_model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint_tts)
vocoder = SpeechT5HifiGan.from_pretrained(checkpoint_vocoder)
return stt_model, processor, vocoder, tts_model
stt_model, processor, vocoder, tts_model = models()
with st.sidebar:
st.title('Settings')
if 'OPENAI_API_TOKEN' in st.secrets:
st.success('API key already provided!', icon='✅')
openai_api_key = st.secrets['OPENAI_API_TOKEN']
else:
openai_api_key = st.text_input('Enter OpenAI API token:', type='password')
if not (openai_api_key).startswith('sk-') or len(openai_api_key) != 56:
st.warning('Please enter your credentials!', icon='⚠️')
else:
st.success('Proceed to entering your prompt message!', icon='👉')
st.markdown("<h3 style='text-align: left; color: white;'>Parameters</h3>", unsafe_allow_html=True)
st.markdown("<h5 style='text-align: left; color: white;'>Choose your parameters below.</h5>", unsafe_allow_html=True)
selected_model = st.selectbox('Choose a GPT model', ['GPT 3.5', 'GPT 4'], index = 1)
if selected_model == 'GPT 3.5':
llm = 'gpt-3.5-turbo'
elif selected_model == 'GPT 4':
llm = 'gpt-4'
temp = st.number_input('Temperature', min_value=0.01, max_value=4.0, value=0.1, step=0.01)
top_percent = st.number_input('Top Percent', min_value=0.01, max_value=1.0, value=0.9, step=0.01)
input_format = st.selectbox("Choose an input format", ["Text", "Audio"], index = 0, disabled=not openai_api_key)
audio_output = st.selectbox("Do you want audio output?", ["Yes", "No"], index = 0)
if audio_output == "Yes":
gender_select = st.selectbox("Choose the gender of your speaker", ["Male", "Female"], index = 1)
openai.api_key = openai_api_key
#person = OpenAI()
@st.cache_data()
def speech_embed():
embeddings_dataset = load_dataset(dataset_tts, split="validation")
embeddings_dataset = embeddings_dataset.to_pandas()
if gender_select == "Male":
#torch.tensor(list(embded[embded["filename"]=="cmu_us_bdl_arctic-wav-arctic_a0009"]["xvector"]))
embed_use = torch.tensor(list(embeddings_dataset[embeddings_dataset["filename"]=="cmu_us_bdl_arctic-wav-arctic_a0009"]["xvector"]))
elif gender_select == "Female":
embed_use = torch.tensor(list(embeddings_dataset[embeddings_dataset["filename"]=="cmu_us_clb_arctic-wav-arctic_a0144"]["xvector"]))
return embed_use
speaker_embeddings = speech_embed()
st.markdown("<h1 style='text-align: center; color: gold;'>TalkGPT 🎤</h1>", unsafe_allow_html=True)
st.markdown("<h3 style='text-align: center; color: white;'>Welcome to TalkGPT. You can speak to GPT and it will speak back to you.</h3>", unsafe_allow_html=True)
with st.expander("Click to see instructions on how the parameters/settings work"):
st.markdown("<h8 style='text-align: center; color: white;'>**Enter OpenAI API token**: You can create an OpenAI token [here](https://openai.com/) or learn how to create one by watching this [video](https://www.youtube.com/watch?v=EQQjdwdVQ-M)</h8>", unsafe_allow_html=True)
st.markdown("<h8 style='text-align: center; color: white;'>**Choose a GPT model**: You can use this parameter to choose between GPT 3.5 and GPT 4.</h8>", unsafe_allow_html=True)
st.markdown("<h8 style='text-align: center; color: white;'>**Temperature**: You can change this value to transform the creativity of GPT. A high temperature will make GPT too creative to the point that it produces meaningless statements. A very low temperature makes GPT repetitive.</h8>", unsafe_allow_html=True)
st.markdown("<h8 style='text-align: center; color: white;'>**Top Percent**: This is used to select the top n percent of the predicted next word. This can serve as a way to ensure GPT is likely going to produce words that matter.</h8>", unsafe_allow_html=True)
st.markdown("<h8 style='text-align: center; color: white;'>**Choose an input format**: You can select between text and audio. If you choose audio, you will have to speak into an audio recorder and if you choose text you will type in your question for GPT.</h8>", unsafe_allow_html=True)
st.markdown("<h8 style='text-align: center; color: white;'>**Do you want an audio output?**: If you select yes, you will get an audio response from GPT alongside the text response.</h8>", unsafe_allow_html=True)
st.markdown("<h8 style='text-align: center; color: white;'>**Choose the gender of your speaker**: You can select the gender of your speaker to be a male or female.</h8>", unsafe_allow_html=True)
def tts(input):
inputs = processor(text=input, return_tensors="pt")
with torch.no_grad():
speech = tts_model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder).cpu().numpy()
return speech
def generate_llm_response():
use_messages = []
for i in range(len(st.session_state.messages)):
use_messages.append({"role": st.session_state.messages[i]["role"], "content": st.session_state.messages[i]["content"]})
response = openai.chat.completions.create(
model=llm,
messages=use_messages,
temperature = temp,
top_p = top_percent,
)
return response.choices[0].message.content
if "messages" not in st.session_state.keys():
st.session_state.messages = []
initial_system = {"role": "system", "content": "You are a helpful assistant. You must convert all the numerical digits in your generated responses to words because the user cannot read numbers.", "audio":""}
st.session_state.messages.append(initial_system)
initial_message = {"role": "assistant", "content": "How may I assist you today?", "audio":""}
st.session_state.messages.append(initial_message)
with st.chat_message(st.session_state.messages[1]["role"]):
st.write(st.session_state.messages[1]["content"])
tts_init1, sampling_rate = tts(st.session_state.messages[1]["content"]), 16000
st.audio(tts_init1, format='audio/wav', sample_rate=sampling_rate)
def message_output(message):
if message["role"] == "user":
with st.chat_message(message["role"]):
st.write(message["content"])
if message["role"] == "assistant":
with st.chat_message("assistant"):
use_response = message["content"]
placeholder = st.empty()
full_response = ''
for item in use_response:
full_response += item
placeholder.markdown(full_response)
placeholder.markdown(full_response)
if audio_output == "Yes":
if len(message["audio"]) > 100:
st.audio(message["audio"], format = "audio/wav", sample_rate=16000)
else:
for i in range(len(message["audio"])):
response_no = "Output " + str(i + 1)
st.text(response_no)
st.audio(message["audio"][i], format='audio/wav', sample_rate=16000)
else:
st.text("No Audio Output.")
if input_format == "Text":
if prompt := st.chat_input("Text Me", disabled=not openai_api_key):
new_message = {"role": "user", "content": prompt, "audio":""}
#with st.chat_message(new_message["role"]):
# st.write(new_message["content"])
st.session_state.messages.append(new_message)
elif input_format == "Audio":
with st.sidebar:
st.text("Click to Record")
audio_bytes = audio_recorder(text="",
recording_color="#e8b62c",
neutral_color="#6aa36f",
icon_name="microphone",
icon_size="6x",
sample_rate = 16000)
if audio_bytes:
bytes_io = BytesIO(audio_bytes)
sample_rate, audio_data = wavfile.read(bytes_io)
audio_input = {"array": audio_data[:,0].astype(np.float32)*(1/32768.0),
"sampling_rate": 16000}
text = str(stt_model(audio_input)["text"])
new_message = {"role": "user", "content": text, "audio":""}
#with st.chat_message(new_message["role"]):
# st.write(new_message["content"])
st.session_state.messages.append(new_message)
for message in st.session_state.messages[2:]:
message_output(message)
if st.session_state.messages[-1]["role"] != "assistant":
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
response = generate_llm_response()
placeholder = st.empty()
full_response = ''
for item in response:
full_response += item
placeholder.markdown(full_response)
placeholder.markdown(full_response)
new_message = {"role": "assistant", "content": full_response}
if audio_output == "Yes":
if (len(full_response)) >= 500:
word = full_response
tot = 0
collect_response = []
reuse_words = ""
next_word = word
while tot < len(word):
new_word = next_word[:500]
good_word = new_word[:len(new_word) - new_word[::-1].find(".")]
collect_response.append(good_word)
reuse_words += good_word
tot += len(good_word)
next_word = word[tot:]
#collect_response[-2] = collect_response[-2] + collect_response[-1]
#collect_response = collect_response[:-1]
tts_list = []
for i in range(len(collect_response)):
response_no = "Output " + str(i + 1)
st.text(response_no)
tts_output, sampling_rate = tts(collect_response[i]), 16000
tts_list.append(tts_output)
st.audio(tts_output, format='audio/wav', sample_rate=sampling_rate)
new_message["audio"] = tts_list
else:
tts_output, sampling_rate = tts(full_response), 16000
new_message["audio"] = tts_output
st.audio(tts_output, format='audio/wav', sample_rate=sampling_rate)
else:
st.text("No Audio Output.")
new_message["audio"] = ""
st.session_state.messages.append(new_message)
def clear_chat_history():
st.session_state.messages = []
audio_list = []
initial_system = {"role": "system", "content": "You are a helpful assistant. You must convert all the numerical digits in your generated responses to words because the user cannot read numbers.", "audio":""}
st.session_state.messages.append(initial_system)
initial_message = {"role": "assistant", "content": "How may I assist you today?", "audio":""}
st.session_state.messages.append(initial_message)
st.sidebar.button('Clear Chat History', on_click=clear_chat_history) |