ask-GDIY / app.py
madoss's picture
Update app.py
21ae066
raw
history blame
2.1 kB
import gradio as gr
import os
import textwrap
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from langchain.docstore.document import Document
from langchain.vectorstores import FAISS
# Function that sets up the generation model using the provided API key
def setup_generator(api_key):
os.environ["OPENAI_API_KEY"] = api_key
embeddings = HuggingFaceEmbeddings(model_name="dangvantuan/sentence-camembert-base")
db = FAISS.load_local("faiss_index", embeddings)
prompt_template = """Use the following pieces of context to answer the question at the end.
Give many informations as possible.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Answer in French:"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff",
retriever=db.as_retriever(),
chain_type_kwargs=chain_type_kwargs,
return_source_documents=True)
return qa
def generate_text(api_key, query):
qa = setup_generator(api_key)
result = qa({"query": query})
res = result["result"]
source = '\n'.join([meta.metadata["title"] for meta in result["source_documents"]])
formatted_text = '\n'.join(textwrap.wrap(res, width=90))
return formatted_text, source
iface = gr.Interface(
fn=generate_text,
inputs=[gr.inputs.Textbox(lines=1, placeholder="Input API Key..."),
gr.inputs.Textbox(lines=3, placeholder="Input Text...",
default="comment vois tu le future de l'intelligence artificielle?")],
outputs=[gr.outputs.Textbox(label="Generated Text"),
gr.outputs.Textbox(label="Source")]
)
iface.launch()