Spaces:
Runtime error
Runtime error
File size: 3,299 Bytes
fc34ca6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import matplotlib
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from time import gmtime, strftime
from shutil import copy
from frames_dataset import FramesDataset
from modules.generator import OcclusionAwareGenerator
from modules.discriminator import MultiScaleDiscriminator
from modules.keypoint_detector import KPDetector
import torch
from train import train
from reconstruction import reconstruction
from animate import animate
if __name__ == "__main__":
if sys.version_info[0] < 3:
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
parser = ArgumentParser()
parser.add_argument("--config", required=True, help="path to config")
parser.add_argument("--mode", default="train", choices=["train", "reconstruction", "animate"])
parser.add_argument("--log_dir", default='log', help="path to log into")
parser.add_argument("--checkpoint", default=None, help="path to checkpoint to restore")
parser.add_argument("--device_ids", default="0", type=lambda x: list(map(int, x.split(','))),
help="Names of the devices comma separated.")
parser.add_argument("--verbose", dest="verbose", action="store_true", help="Print model architecture")
parser.set_defaults(verbose=False)
opt = parser.parse_args()
with open(opt.config) as f:
config = yaml.load(f)
if opt.checkpoint is not None:
log_dir = os.path.join(*os.path.split(opt.checkpoint)[:-1])
else:
log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0])
log_dir += ' ' + strftime("%d_%m_%y_%H.%M.%S", gmtime())
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
**config['model_params']['common_params'])
if torch.cuda.is_available():
generator.to(opt.device_ids[0])
if opt.verbose:
print(generator)
discriminator = MultiScaleDiscriminator(**config['model_params']['discriminator_params'],
**config['model_params']['common_params'])
if torch.cuda.is_available():
discriminator.to(opt.device_ids[0])
if opt.verbose:
print(discriminator)
kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
**config['model_params']['common_params'])
if torch.cuda.is_available():
kp_detector.to(opt.device_ids[0])
if opt.verbose:
print(kp_detector)
dataset = FramesDataset(is_train=(opt.mode == 'train'), **config['dataset_params'])
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(os.path.join(log_dir, os.path.basename(opt.config))):
copy(opt.config, log_dir)
if opt.mode == 'train':
print("Training...")
train(config, generator, discriminator, kp_detector, opt.checkpoint, log_dir, dataset, opt.device_ids)
elif opt.mode == 'reconstruction':
print("Reconstruction...")
reconstruction(config, generator, kp_detector, opt.checkpoint, log_dir, dataset)
elif opt.mode == 'animate':
print("Animate...")
animate(config, generator, kp_detector, opt.checkpoint, log_dir, dataset)
|