File size: 8,363 Bytes
fc34ca6
 
 
 
 
 
e984f29
fc34ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e984f29
fc34ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358dccc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import torch
import torch.nn.functional as F
import imageio

import os
from skimage.draw import disk

import matplotlib.pyplot as plt
import collections


class Logger:
    def __init__(self, log_dir, checkpoint_freq=100, visualizer_params=None, zfill_num=8, log_file_name='log.txt'):

        self.loss_list = []
        self.cpk_dir = log_dir
        self.visualizations_dir = os.path.join(log_dir, 'train-vis')
        if not os.path.exists(self.visualizations_dir):
            os.makedirs(self.visualizations_dir)
        self.log_file = open(os.path.join(log_dir, log_file_name), 'a')
        self.zfill_num = zfill_num
        self.visualizer = Visualizer(**visualizer_params)
        self.checkpoint_freq = checkpoint_freq
        self.epoch = 0
        self.best_loss = float('inf')
        self.names = None

    def log_scores(self, loss_names):
        loss_mean = np.array(self.loss_list).mean(axis=0)

        loss_string = "; ".join(["%s - %.5f" % (name, value) for name, value in zip(loss_names, loss_mean)])
        loss_string = str(self.epoch).zfill(self.zfill_num) + ") " + loss_string

        print(loss_string, file=self.log_file)
        self.loss_list = []
        self.log_file.flush()

    def visualize_rec(self, inp, out):
        image = self.visualizer.visualize(inp['driving'], inp['source'], out)
        imageio.imsave(os.path.join(self.visualizations_dir, "%s-rec.png" % str(self.epoch).zfill(self.zfill_num)), image)

    def save_cpk(self, emergent=False):
        cpk = {k: v.state_dict() for k, v in self.models.items()}
        cpk['epoch'] = self.epoch
        cpk_path = os.path.join(self.cpk_dir, '%s-checkpoint.pth.tar' % str(self.epoch).zfill(self.zfill_num)) 
        if not (os.path.exists(cpk_path) and emergent):
            torch.save(cpk, cpk_path)

    @staticmethod
    def load_cpk(checkpoint_path, generator=None, discriminator=None, kp_detector=None,
                 optimizer_generator=None, optimizer_discriminator=None, optimizer_kp_detector=None):
        if torch.cuda.is_available():
            map_location = None
        else:
            map_location = 'cpu'
        checkpoint = torch.load(checkpoint_path, map_location)
        if generator is not None:
            generator.load_state_dict(checkpoint['generator'])
        if kp_detector is not None:
            kp_detector.load_state_dict(checkpoint['kp_detector'])
        if discriminator is not None:
            try:
               discriminator.load_state_dict(checkpoint['discriminator'])
            except:
               print ('No discriminator in the state-dict. Dicriminator will be randomly initialized')
        if optimizer_generator is not None:
            optimizer_generator.load_state_dict(checkpoint['optimizer_generator'])
        if optimizer_discriminator is not None:
            try:
                optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator'])
            except RuntimeError as e:
                print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized')
        if optimizer_kp_detector is not None:
            optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector'])

        return checkpoint['epoch']

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if 'models' in self.__dict__:
            self.save_cpk()
        self.log_file.close()

    def log_iter(self, losses):
        losses = collections.OrderedDict(losses.items())
        if self.names is None:
            self.names = list(losses.keys())
        self.loss_list.append(list(losses.values()))

    def log_epoch(self, epoch, models, inp, out):
        self.epoch = epoch
        self.models = models
        if (self.epoch + 1) % self.checkpoint_freq == 0:
            self.save_cpk()
        self.log_scores(self.names)
        self.visualize_rec(inp, out)


class Visualizer:
    def __init__(self, kp_size=5, draw_border=False, colormap='gist_rainbow'):
        self.kp_size = kp_size
        self.draw_border = draw_border
        self.colormap = plt.get_cmap(colormap)

    def draw_image_with_kp(self, image, kp_array):
        image = np.copy(image)
        spatial_size = np.array(image.shape[:2][::-1])[np.newaxis]
        kp_array = spatial_size * (kp_array + 1) / 2
        num_kp = kp_array.shape[0]
        for kp_ind, kp in enumerate(kp_array):
            rr, cc =disk(kp[1], kp[0], self.kp_size, shape=image.shape[:2])
            image[rr, cc] = np.array(self.colormap(kp_ind / num_kp))[:3]
        return image

    def create_image_column_with_kp(self, images, kp):
        image_array = np.array([self.draw_image_with_kp(v, k) for v, k in zip(images, kp)])
        return self.create_image_column(image_array)

    def create_image_column(self, images):
        if self.draw_border:
            images = np.copy(images)
            images[:, :, [0, -1]] = (1, 1, 1)
        return np.concatenate(list(images), axis=0)

    def create_image_grid(self, *args):
        out = []
        for arg in args:
            if type(arg) == tuple:
                out.append(self.create_image_column_with_kp(arg[0], arg[1]))
            else:
                out.append(self.create_image_column(arg))
        return np.concatenate(out, axis=1)

    def visualize(self, driving, source, out):
        images = []

        # Source image with keypoints
        source = source.data.cpu()
        kp_source = out['kp_source']['value'].data.cpu().numpy()
        source = np.transpose(source, [0, 2, 3, 1])
        images.append((source, kp_source))

        # Equivariance visualization
        if 'transformed_frame' in out:
            transformed = out['transformed_frame'].data.cpu().numpy()
            transformed = np.transpose(transformed, [0, 2, 3, 1])
            transformed_kp = out['transformed_kp']['value'].data.cpu().numpy()
            images.append((transformed, transformed_kp))

        # Driving image with keypoints
        kp_driving = out['kp_driving']['value'].data.cpu().numpy()
        driving = driving.data.cpu().numpy()
        driving = np.transpose(driving, [0, 2, 3, 1])
        images.append((driving, kp_driving))

        # Deformed image
        if 'deformed' in out:
            deformed = out['deformed'].data.cpu().numpy()
            deformed = np.transpose(deformed, [0, 2, 3, 1])
            images.append(deformed)

        # Result with and without keypoints
        prediction = out['prediction'].data.cpu().numpy()
        prediction = np.transpose(prediction, [0, 2, 3, 1])
        if 'kp_norm' in out:
            kp_norm = out['kp_norm']['value'].data.cpu().numpy()
            images.append((prediction, kp_norm))
        images.append(prediction)


        ## Occlusion map
        if 'occlusion_map' in out:
            occlusion_map = out['occlusion_map'].data.cpu().repeat(1, 3, 1, 1)
            occlusion_map = F.interpolate(occlusion_map, size=source.shape[1:3]).numpy()
            occlusion_map = np.transpose(occlusion_map, [0, 2, 3, 1])
            images.append(occlusion_map)

        # Deformed images according to each individual transform
        if 'sparse_deformed' in out:
            full_mask = []
            for i in range(out['sparse_deformed'].shape[1]):
                image = out['sparse_deformed'][:, i].data.cpu()
                image = F.interpolate(image, size=source.shape[1:3])
                mask = out['mask'][:, i:(i+1)].data.cpu().repeat(1, 3, 1, 1)
                mask = F.interpolate(mask, size=source.shape[1:3])
                image = np.transpose(image.numpy(), (0, 2, 3, 1))
                mask = np.transpose(mask.numpy(), (0, 2, 3, 1))

                if i != 0:
                    color = np.array(self.colormap((i - 1) / (out['sparse_deformed'].shape[1] - 1)))[:3]
                else:
                    color = np.array((0, 0, 0))

                color = color.reshape((1, 1, 1, 3))

                images.append(image)
                if i != 0:
                    images.append(mask * color)
                else:
                    images.append(mask)

                full_mask.append(mask * color)

            images.append(sum(full_mask))

        image = self.create_image_grid(*images)
        image = (255 * image).astype(np.uint8)
        return image