Spaces:
Runtime error
Runtime error
File size: 1,623 Bytes
2917b9c f0b0938 1fd7cd3 73c739d f0b0938 9547cc1 f0b0938 2917b9c 73c739d 1fd7cd3 515de26 1101fa6 1fd7cd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import imageio
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from skimage.transform import resize
import warnings
from demo import make_animation
from skimage import img_as_ubyte
from demo import load_checkpoints
warnings.filterwarnings("ignore")
source_image = imageio.imread('harold.jpg')
driving_video = imageio.mimread('part1.mp4')
#Resize image and video to 256x256
source_image = resize(source_image, (256, 256))[..., :3]
driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
def display(source, driving, generated=None):
fig = plt.figure(figsize=(8 + 4 * (generated is not None), 6))
ims = []
for i in range(len(driving)):
cols = [source]
cols.append(driving[i])
if generated is not None:
cols.append(generated[i])
im = plt.imshow(np.concatenate(cols, axis=1), animated=True)
plt.axis('off')
ims.append([im])
ani = animation.ArtistAnimation(fig, ims, interval=50, repeat_delay=1000)
plt.close()
return ani
# Create some example data
st.write("Hello, World!")
# display HTML
# display Markdown
st.write("# Hello, World!")
generator, kp_detector = load_checkpoints(config_path='config/vox-256.yaml',checkpoint_path='vox-cpk.pth.tar')
predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=True)
st.write(predictions)
#save resulting video
imageio.mimsave('generated.mp4', [img_as_ubyte(frame) for frame in predictions]) |