Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import imageio | |
import os | |
from skimage.draw import circle | |
import matplotlib.pyplot as plt | |
import collections | |
class Logger: | |
def __init__(self, log_dir, checkpoint_freq=100, visualizer_params=None, zfill_num=8, log_file_name='log.txt'): | |
self.loss_list = [] | |
self.cpk_dir = log_dir | |
self.visualizations_dir = os.path.join(log_dir, 'train-vis') | |
if not os.path.exists(self.visualizations_dir): | |
os.makedirs(self.visualizations_dir) | |
self.log_file = open(os.path.join(log_dir, log_file_name), 'a') | |
self.zfill_num = zfill_num | |
self.visualizer = Visualizer(**visualizer_params) | |
self.checkpoint_freq = checkpoint_freq | |
self.epoch = 0 | |
self.best_loss = float('inf') | |
self.names = None | |
def log_scores(self, loss_names): | |
loss_mean = np.array(self.loss_list).mean(axis=0) | |
loss_string = "; ".join(["%s - %.5f" % (name, value) for name, value in zip(loss_names, loss_mean)]) | |
loss_string = str(self.epoch).zfill(self.zfill_num) + ") " + loss_string | |
print(loss_string, file=self.log_file) | |
self.loss_list = [] | |
self.log_file.flush() | |
def visualize_rec(self, inp, out): | |
image = self.visualizer.visualize(inp['driving'], inp['source'], out) | |
imageio.imsave(os.path.join(self.visualizations_dir, "%s-rec.png" % str(self.epoch).zfill(self.zfill_num)), image) | |
def save_cpk(self, emergent=False): | |
cpk = {k: v.state_dict() for k, v in self.models.items()} | |
cpk['epoch'] = self.epoch | |
cpk_path = os.path.join(self.cpk_dir, '%s-checkpoint.pth.tar' % str(self.epoch).zfill(self.zfill_num)) | |
if not (os.path.exists(cpk_path) and emergent): | |
torch.save(cpk, cpk_path) | |
def load_cpk(checkpoint_path, generator=None, discriminator=None, kp_detector=None, | |
optimizer_generator=None, optimizer_discriminator=None, optimizer_kp_detector=None): | |
if torch.cuda.is_available(): | |
map_location = None | |
else: | |
map_location = 'cpu' | |
checkpoint = torch.load(checkpoint_path, map_location) | |
if generator is not None: | |
generator.load_state_dict(checkpoint['generator']) | |
if kp_detector is not None: | |
kp_detector.load_state_dict(checkpoint['kp_detector']) | |
if discriminator is not None: | |
try: | |
discriminator.load_state_dict(checkpoint['discriminator']) | |
except: | |
print ('No discriminator in the state-dict. Dicriminator will be randomly initialized') | |
if optimizer_generator is not None: | |
optimizer_generator.load_state_dict(checkpoint['optimizer_generator']) | |
if optimizer_discriminator is not None: | |
try: | |
optimizer_discriminator.load_state_dict(checkpoint['optimizer_discriminator']) | |
except RuntimeError as e: | |
print ('No discriminator optimizer in the state-dict. Optimizer will be not initialized') | |
if optimizer_kp_detector is not None: | |
optimizer_kp_detector.load_state_dict(checkpoint['optimizer_kp_detector']) | |
return checkpoint['epoch'] | |
def __enter__(self): | |
return self | |
def __exit__(self, exc_type, exc_val, exc_tb): | |
if 'models' in self.__dict__: | |
self.save_cpk() | |
self.log_file.close() | |
def log_iter(self, losses): | |
losses = collections.OrderedDict(losses.items()) | |
if self.names is None: | |
self.names = list(losses.keys()) | |
self.loss_list.append(list(losses.values())) | |
def log_epoch(self, epoch, models, inp, out): | |
self.epoch = epoch | |
self.models = models | |
if (self.epoch + 1) % self.checkpoint_freq == 0: | |
self.save_cpk() | |
self.log_scores(self.names) | |
self.visualize_rec(inp, out) | |
class Visualizer: | |
def __init__(self, kp_size=5, draw_border=False, colormap='gist_rainbow'): | |
self.kp_size = kp_size | |
self.draw_border = draw_border | |
self.colormap = plt.get_cmap(colormap) | |
def draw_image_with_kp(self, image, kp_array): | |
image = np.copy(image) | |
spatial_size = np.array(image.shape[:2][::-1])[np.newaxis] | |
kp_array = spatial_size * (kp_array + 1) / 2 | |
num_kp = kp_array.shape[0] | |
for kp_ind, kp in enumerate(kp_array): | |
rr, cc = circle(kp[1], kp[0], self.kp_size, shape=image.shape[:2]) | |
image[rr, cc] = np.array(self.colormap(kp_ind / num_kp))[:3] | |
return image | |
def create_image_column_with_kp(self, images, kp): | |
image_array = np.array([self.draw_image_with_kp(v, k) for v, k in zip(images, kp)]) | |
return self.create_image_column(image_array) | |
def create_image_column(self, images): | |
if self.draw_border: | |
images = np.copy(images) | |
images[:, :, [0, -1]] = (1, 1, 1) | |
return np.concatenate(list(images), axis=0) | |
def create_image_grid(self, *args): | |
out = [] | |
for arg in args: | |
if type(arg) == tuple: | |
out.append(self.create_image_column_with_kp(arg[0], arg[1])) | |
else: | |
out.append(self.create_image_column(arg)) | |
return np.concatenate(out, axis=1) | |
def visualize(self, driving, source, out): | |
images = [] | |
# Source image with keypoints | |
source = source.data.cpu() | |
kp_source = out['kp_source']['value'].data.cpu().numpy() | |
source = np.transpose(source, [0, 2, 3, 1]) | |
images.append((source, kp_source)) | |
# Equivariance visualization | |
if 'transformed_frame' in out: | |
transformed = out['transformed_frame'].data.cpu().numpy() | |
transformed = np.transpose(transformed, [0, 2, 3, 1]) | |
transformed_kp = out['transformed_kp']['value'].data.cpu().numpy() | |
images.append((transformed, transformed_kp)) | |
# Driving image with keypoints | |
kp_driving = out['kp_driving']['value'].data.cpu().numpy() | |
driving = driving.data.cpu().numpy() | |
driving = np.transpose(driving, [0, 2, 3, 1]) | |
images.append((driving, kp_driving)) | |
# Deformed image | |
if 'deformed' in out: | |
deformed = out['deformed'].data.cpu().numpy() | |
deformed = np.transpose(deformed, [0, 2, 3, 1]) | |
images.append(deformed) | |
# Result with and without keypoints | |
prediction = out['prediction'].data.cpu().numpy() | |
prediction = np.transpose(prediction, [0, 2, 3, 1]) | |
if 'kp_norm' in out: | |
kp_norm = out['kp_norm']['value'].data.cpu().numpy() | |
images.append((prediction, kp_norm)) | |
images.append(prediction) | |
## Occlusion map | |
if 'occlusion_map' in out: | |
occlusion_map = out['occlusion_map'].data.cpu().repeat(1, 3, 1, 1) | |
occlusion_map = F.interpolate(occlusion_map, size=source.shape[1:3]).numpy() | |
occlusion_map = np.transpose(occlusion_map, [0, 2, 3, 1]) | |
images.append(occlusion_map) | |
# Deformed images according to each individual transform | |
if 'sparse_deformed' in out: | |
full_mask = [] | |
for i in range(out['sparse_deformed'].shape[1]): | |
image = out['sparse_deformed'][:, i].data.cpu() | |
image = F.interpolate(image, size=source.shape[1:3]) | |
mask = out['mask'][:, i:(i+1)].data.cpu().repeat(1, 3, 1, 1) | |
mask = F.interpolate(mask, size=source.shape[1:3]) | |
image = np.transpose(image.numpy(), (0, 2, 3, 1)) | |
mask = np.transpose(mask.numpy(), (0, 2, 3, 1)) | |
if i != 0: | |
color = np.array(self.colormap((i - 1) / (out['sparse_deformed'].shape[1] - 1)))[:3] | |
else: | |
color = np.array((0, 0, 0)) | |
color = color.reshape((1, 1, 1, 3)) | |
images.append(image) | |
if i != 0: | |
images.append(mask * color) | |
else: | |
images.append(mask) | |
full_mask.append(mask * color) | |
images.append(sum(full_mask)) | |
image = self.create_image_grid(*images) | |
image = (255 * image).astype(np.uint8) | |
return image | |