newbot / train.py
maduvantha's picture
Upload 42 files
fc34ca6
raw
history blame
4.48 kB
from tqdm import trange
import torch
from torch.utils.data import DataLoader
from logger import Logger
from modules.model import GeneratorFullModel, DiscriminatorFullModel
from torch.optim.lr_scheduler import MultiStepLR
from sync_batchnorm import DataParallelWithCallback
from frames_dataset import DatasetRepeater
def train(config, generator, discriminator, kp_detector, checkpoint, log_dir, dataset, device_ids):
train_params = config['train_params']
optimizer_generator = torch.optim.Adam(generator.parameters(), lr=train_params['lr_generator'], betas=(0.5, 0.999))
optimizer_discriminator = torch.optim.Adam(discriminator.parameters(), lr=train_params['lr_discriminator'], betas=(0.5, 0.999))
optimizer_kp_detector = torch.optim.Adam(kp_detector.parameters(), lr=train_params['lr_kp_detector'], betas=(0.5, 0.999))
if checkpoint is not None:
start_epoch = Logger.load_cpk(checkpoint, generator, discriminator, kp_detector,
optimizer_generator, optimizer_discriminator,
None if train_params['lr_kp_detector'] == 0 else optimizer_kp_detector)
else:
start_epoch = 0
scheduler_generator = MultiStepLR(optimizer_generator, train_params['epoch_milestones'], gamma=0.1,
last_epoch=start_epoch - 1)
scheduler_discriminator = MultiStepLR(optimizer_discriminator, train_params['epoch_milestones'], gamma=0.1,
last_epoch=start_epoch - 1)
scheduler_kp_detector = MultiStepLR(optimizer_kp_detector, train_params['epoch_milestones'], gamma=0.1,
last_epoch=-1 + start_epoch * (train_params['lr_kp_detector'] != 0))
if 'num_repeats' in train_params or train_params['num_repeats'] != 1:
dataset = DatasetRepeater(dataset, train_params['num_repeats'])
dataloader = DataLoader(dataset, batch_size=train_params['batch_size'], shuffle=True, num_workers=6, drop_last=True)
generator_full = GeneratorFullModel(kp_detector, generator, discriminator, train_params)
discriminator_full = DiscriminatorFullModel(kp_detector, generator, discriminator, train_params)
if torch.cuda.is_available():
generator_full = DataParallelWithCallback(generator_full, device_ids=device_ids)
discriminator_full = DataParallelWithCallback(discriminator_full, device_ids=device_ids)
with Logger(log_dir=log_dir, visualizer_params=config['visualizer_params'], checkpoint_freq=train_params['checkpoint_freq']) as logger:
for epoch in trange(start_epoch, train_params['num_epochs']):
for x in dataloader:
losses_generator, generated = generator_full(x)
loss_values = [val.mean() for val in losses_generator.values()]
loss = sum(loss_values)
loss.backward()
optimizer_generator.step()
optimizer_generator.zero_grad()
optimizer_kp_detector.step()
optimizer_kp_detector.zero_grad()
if train_params['loss_weights']['generator_gan'] != 0:
optimizer_discriminator.zero_grad()
losses_discriminator = discriminator_full(x, generated)
loss_values = [val.mean() for val in losses_discriminator.values()]
loss = sum(loss_values)
loss.backward()
optimizer_discriminator.step()
optimizer_discriminator.zero_grad()
else:
losses_discriminator = {}
losses_generator.update(losses_discriminator)
losses = {key: value.mean().detach().data.cpu().numpy() for key, value in losses_generator.items()}
logger.log_iter(losses=losses)
scheduler_generator.step()
scheduler_discriminator.step()
scheduler_kp_detector.step()
logger.log_epoch(epoch, {'generator': generator,
'discriminator': discriminator,
'kp_detector': kp_detector,
'optimizer_generator': optimizer_generator,
'optimizer_discriminator': optimizer_discriminator,
'optimizer_kp_detector': optimizer_kp_detector}, inp=x, out=generated)