Spaces:
Configuration error
Configuration error
import matplotlib | |
matplotlib.use('Agg') | |
import os, sys | |
import yaml | |
from argparse import ArgumentParser | |
from time import gmtime, strftime | |
from shutil import copy | |
from frames_dataset import FramesDataset | |
from modules.generator import OcclusionAwareGenerator | |
from modules.discriminator import MultiScaleDiscriminator | |
from modules.keypoint_detector import KPDetector | |
import torch | |
from train import train | |
from reconstruction import reconstruction | |
from animate import animate | |
if __name__ == "__main__": | |
if sys.version_info[0] < 3: | |
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7") | |
parser = ArgumentParser() | |
parser.add_argument("--config", required=True, help="path to config") | |
parser.add_argument("--mode", default="train", choices=["train", "reconstruction", "animate"]) | |
parser.add_argument("--log_dir", default='log', help="path to log into") | |
parser.add_argument("--checkpoint", default=None, help="path to checkpoint to restore") | |
parser.add_argument("--device_ids", default="0", type=lambda x: list(map(int, x.split(','))), | |
help="Names of the devices comma separated.") | |
parser.add_argument("--verbose", dest="verbose", action="store_true", help="Print model architecture") | |
parser.set_defaults(verbose=False) | |
opt = parser.parse_args() | |
with open(opt.config) as f: | |
config = yaml.load(f) | |
if opt.checkpoint is not None: | |
log_dir = os.path.join(*os.path.split(opt.checkpoint)[:-1]) | |
else: | |
log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0]) | |
log_dir += ' ' + strftime("%d_%m_%y_%H.%M.%S", gmtime()) | |
generator = OcclusionAwareGenerator(**config['model_params']['generator_params'], | |
**config['model_params']['common_params']) | |
if torch.cuda.is_available(): | |
generator.to(opt.device_ids[0]) | |
if opt.verbose: | |
print(generator) | |
discriminator = MultiScaleDiscriminator(**config['model_params']['discriminator_params'], | |
**config['model_params']['common_params']) | |
if torch.cuda.is_available(): | |
discriminator.to(opt.device_ids[0]) | |
if opt.verbose: | |
print(discriminator) | |
kp_detector = KPDetector(**config['model_params']['kp_detector_params'], | |
**config['model_params']['common_params']) | |
if torch.cuda.is_available(): | |
kp_detector.to(opt.device_ids[0]) | |
if opt.verbose: | |
print(kp_detector) | |
dataset = FramesDataset(is_train=(opt.mode == 'train'), **config['dataset_params']) | |
if not os.path.exists(log_dir): | |
os.makedirs(log_dir) | |
if not os.path.exists(os.path.join(log_dir, os.path.basename(opt.config))): | |
copy(opt.config, log_dir) | |
if opt.mode == 'train': | |
print("Training...") | |
train(config, generator, discriminator, kp_detector, opt.checkpoint, log_dir, dataset, opt.device_ids) | |
elif opt.mode == 'reconstruction': | |
print("Reconstruction...") | |
reconstruction(config, generator, kp_detector, opt.checkpoint, log_dir, dataset) | |
elif opt.mode == 'animate': | |
print("Animate...") | |
animate(config, generator, kp_detector, opt.checkpoint, log_dir, dataset) | |