File size: 7,904 Bytes
eddf80e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from torch import nn

import torch.nn.functional as F
import torch

from sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d


def kp2gaussian(kp, spatial_size, kp_variance):
    """
    Transform a keypoint into gaussian like representation
    """
    mean = kp['value']

    coordinate_grid = make_coordinate_grid(spatial_size, mean.type())
    number_of_leading_dimensions = len(mean.shape) - 1
    shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape
    coordinate_grid = coordinate_grid.view(*shape)
    repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1)
    coordinate_grid = coordinate_grid.repeat(*repeats)

    # Preprocess kp shape
    shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 2)
    mean = mean.view(*shape)

    mean_sub = (coordinate_grid - mean)

    out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)

    return out


def make_coordinate_grid(spatial_size, type):
    """
    Create a meshgrid [-1,1] x [-1,1] of given spatial_size.
    """
    h, w = spatial_size
    x = torch.arange(w).type(type)
    y = torch.arange(h).type(type)

    x = (2 * (x / (w - 1)) - 1)
    y = (2 * (y / (h - 1)) - 1)

    yy = y.view(-1, 1).repeat(1, w)
    xx = x.view(1, -1).repeat(h, 1)

    meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)

    return meshed


class ResBlock2d(nn.Module):
    """
    Res block, preserve spatial resolution.
    """

    def __init__(self, in_features, kernel_size, padding):
        super(ResBlock2d, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                               padding=padding)
        self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
                               padding=padding)
        self.norm1 = BatchNorm2d(in_features, affine=True)
        self.norm2 = BatchNorm2d(in_features, affine=True)

    def forward(self, x):
        out = self.norm1(x)
        out = F.relu(out)
        out = self.conv1(out)
        out = self.norm2(out)
        out = F.relu(out)
        out = self.conv2(out)
        out += x
        return out


class UpBlock2d(nn.Module):
    """
    Upsampling block for use in decoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
        super(UpBlock2d, self).__init__()

        self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
                              padding=padding, groups=groups)
        self.norm = BatchNorm2d(out_features, affine=True)

    def forward(self, x):
        out = F.interpolate(x, scale_factor=2)
        out = self.conv(out)
        out = self.norm(out)
        out = F.relu(out)
        return out


class DownBlock2d(nn.Module):
    """
    Downsampling block for use in encoder.
    """

    def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
        super(DownBlock2d, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
                              padding=padding, groups=groups)
        self.norm = BatchNorm2d(out_features, affine=True)
        self.pool = nn.AvgPool2d(kernel_size=(2, 2))

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        out = self.pool(out)
        return out


class SameBlock2d(nn.Module):
    """
    Simple block, preserve spatial resolution.
    """

    def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1):
        super(SameBlock2d, self).__init__()
        self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features,
                              kernel_size=kernel_size, padding=padding, groups=groups)
        self.norm = BatchNorm2d(out_features, affine=True)

    def forward(self, x):
        out = self.conv(x)
        out = self.norm(out)
        out = F.relu(out)
        return out


class Encoder(nn.Module):
    """
    Hourglass Encoder
    """

    def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
        super(Encoder, self).__init__()

        down_blocks = []
        for i in range(num_blocks):
            down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)),
                                           min(max_features, block_expansion * (2 ** (i + 1))),
                                           kernel_size=3, padding=1))
        self.down_blocks = nn.ModuleList(down_blocks)

    def forward(self, x):
        outs = [x]
        for down_block in self.down_blocks:
            outs.append(down_block(outs[-1]))
        return outs


class Decoder(nn.Module):
    """
    Hourglass Decoder
    """

    def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
        super(Decoder, self).__init__()

        up_blocks = []

        for i in range(num_blocks)[::-1]:
            in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
            out_filters = min(max_features, block_expansion * (2 ** i))
            up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))

        self.up_blocks = nn.ModuleList(up_blocks)
        self.out_filters = block_expansion + in_features

    def forward(self, x):
        out = x.pop()
        for up_block in self.up_blocks:
            out = up_block(out)
            skip = x.pop()
            out = torch.cat([out, skip], dim=1)
        return out


class Hourglass(nn.Module):
    """
    Hourglass architecture.
    """

    def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
        super(Hourglass, self).__init__()
        self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
        self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
        self.out_filters = self.decoder.out_filters

    def forward(self, x):
        return self.decoder(self.encoder(x))


class AntiAliasInterpolation2d(nn.Module):
    """
    Band-limited downsampling, for better preservation of the input signal.
    """
    def __init__(self, channels, scale):
        super(AntiAliasInterpolation2d, self).__init__()
        sigma = (1 / scale - 1) / 2
        kernel_size = 2 * round(sigma * 4) + 1
        self.ka = kernel_size // 2
        self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka

        kernel_size = [kernel_size, kernel_size]
        sigma = [sigma, sigma]
        # The gaussian kernel is the product of the
        # gaussian function of each dimension.
        kernel = 1
        meshgrids = torch.meshgrid(
            [
                torch.arange(size, dtype=torch.float32)
                for size in kernel_size
                ]
        )
        for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
            mean = (size - 1) / 2
            kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2))

        # Make sure sum of values in gaussian kernel equals 1.
        kernel = kernel / torch.sum(kernel)
        # Reshape to depthwise convolutional weight
        kernel = kernel.view(1, 1, *kernel.size())
        kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))

        self.register_buffer('weight', kernel)
        self.groups = channels
        self.scale = scale
        inv_scale = 1 / scale
        self.int_inv_scale = int(inv_scale)

    def forward(self, input):
        if self.scale == 1.0:
            return input

        out = F.pad(input, (self.ka, self.kb, self.ka, self.kb))
        out = F.conv2d(out, weight=self.weight, groups=self.groups)
        out = out[:, :, ::self.int_inv_scale, ::self.int_inv_scale]

        return out