maduvantha commited on
Commit
e1ff00c
·
1 Parent(s): 79ba87f

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +119 -0
app.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import imageio
2
+ import imageio.v3 as iio
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import matplotlib.animation as animation
6
+ from skimage.transform import resize
7
+ from IPython.display import HTML
8
+ import asyncio
9
+ import warnings
10
+ from demo import load_checkpoints
11
+ import torch
12
+ from animate import normalize_kp
13
+ from skimage import img_as_ubyte
14
+ from tqdm import tqdm
15
+ from scipy.spatial import ConvexHull
16
+ from urllib.request import Request, urlopen
17
+ from nextcord import Interaction, SlashOption, ChannelType
18
+ from nextcord.abc import GuildChannel
19
+ from nextcord.ext import commands
20
+ import nextcord
21
+
22
+ client = commands.Bot(command_prefix='!')
23
+ testigaerverid=989256818398203945
24
+ #aaaaaaaaaaaa
25
+ def find_best_frame(source, driving, cpu=False):
26
+ import face_alignment
27
+
28
+ def normalize_kp(kp):
29
+ kp = kp - kp.mean(axis=0, keepdims=True)
30
+ area = ConvexHull(kp[:, :2]).volume
31
+ area = np.sqrt(area)
32
+ kp[:, :2] = kp[:, :2] / area
33
+ return kp
34
+
35
+ fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
36
+ device='cpu' if cpu else 'cuda')
37
+ kp_source = fa.get_landmarks(255 * source)[0]
38
+ kp_source = normalize_kp(kp_source)
39
+ norm = float('inf')
40
+ frame_num = 0
41
+ for i, image in tqdm(enumerate(driving)):
42
+ kp_driving = fa.get_landmarks(255 * image)[0]
43
+ kp_driving = normalize_kp(kp_driving)
44
+ new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
45
+ if new_norm < norm:
46
+ norm = new_norm
47
+ frame_num = i
48
+ return frame_num
49
+ #sssssssssssss
50
+ def display(source, driving, generated=None):
51
+ fig = plt.figure(figsize=(8 + 4 * (generated is not None), 6))
52
+
53
+ ims = []
54
+ for i in range(len(driving)):
55
+ cols = [source]
56
+ cols.append(driving[i])
57
+ if generated is not None:
58
+ cols.append(generated[i])
59
+ im = plt.imshow(np.concatenate(cols, axis=1), animated=True)
60
+ plt.axis('off')
61
+ ims.append([im])
62
+
63
+ ani = animation.ArtistAnimation(fig, ims, interval=50, repeat_delay=1000)
64
+ plt.close()
65
+ return ani
66
+ #Resize image and video to 256x256
67
+ def dy():
68
+ for i in range( 10):
69
+ i=i+1
70
+ time.sleep(5)
71
+ yield str(i)
72
+
73
+
74
+ @client.slash_command(name="repeat", description="whatever doyou want",guild_ids=[testigaerverid])
75
+ async def repeat(interaction : Interaction, message:str, message2:str):
76
+ channel = interaction.channel
77
+ await interaction.response.send_message("jj")
78
+ warnings.filterwarnings("ignore")
79
+ web_image = message
80
+ request_site = Request(web_image, headers={"User-Agent": "Mozilla/5.0"})
81
+ source_image =iio.imread(urlopen(request_site).read())
82
+ urlforvideo=message2
83
+ driving_video = iio.imread(urlforvideo)
84
+ source_image = resize(source_image, (256, 256))[..., :3]
85
+ driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
86
+ eg,cd=load_checkpoints('config//vox-256.yaml','vox-cpk.pth.tar',True)
87
+ cpu=True
88
+ print("came to this")
89
+ with torch.no_grad():
90
+ predictions = []
91
+ source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
92
+ if not cpu:
93
+ source = source.cuda()
94
+ driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
95
+ kp_source = cd(source)
96
+ kp_driving_initial = cd(driving[:, :, 0])
97
+ progress_message = await channel.send("Progress: 0%")
98
+ for frame_idx in tqdm(range(driving.shape[2])):
99
+
100
+ driving_frame = driving[:, :, frame_idx]
101
+ if not cpu:
102
+ driving_frame = driving_frame.cuda()
103
+ kp_driving = cd(driving_frame)
104
+ kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
105
+ kp_driving_initial=kp_driving_initial, use_relative_movement=True,
106
+ use_relative_jacobian=True, adapt_movement_scale=True)
107
+ out = eg(source, kp_source=kp_source, kp_driving=kp_norm)
108
+ predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
109
+ await progress_message.edit(content=f"{frame_idx}")
110
+
111
+ print("print karandath puluvan bola")
112
+ imageio.mimsave('../generated.mp4', [img_as_ubyte(frame) for frame in predictions])
113
+ @client.event
114
+ async def on_ready():
115
+ print("Bot is connected")
116
+
117
+
118
+
119
+ client.run("MTA1OTcwODIxNTY5MDAwNjU5OA.GjNyS_.QNudUyA7G-gHbMZPQDuPWIQdmldKFJOi5c6AdI")