File size: 3,270 Bytes
1db4907 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
# Import the dependencies
import gradio as gr
from PIL import Image
import torch
from transformers import SamModel, SamProcessor
import numpy as np
import matplotlib.pyplot as plt
# Load the SAM model and processor
model = SamModel.from_pretrained("Zigeng/SlimSAM-uniform-77")
processor = SamProcessor.from_pretrained("Zigeng/SlimSAM-uniform-77")
# Global variable to store input points
input_points = []
# Helper functions
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3),
np.array([0.6])],
axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
# Function to get pixel coordinates
def get_pixel_coordinates(image, evt: gr.SelectData):
global input_points
x, y = evt.index[0], evt.index[1]
input_points = [[[x, y]]]
return perform_prediction(image)
# Function to perform SAM model prediction
def perform_prediction(image):
global input_points
# Preprocess the image
inputs = processor(images=image, input_points=input_points, return_tensors="pt")
# Perform prediction
with torch.no_grad():
outputs = model(**inputs)
iou = outputs.iou_scores
max_iou_index = torch.argmax(iou)
# Post-process the masks
predicted_masks = processor.image_processor.post_process_masks(
outputs.pred_masks,
inputs['original_sizes'],
inputs['reshaped_input_sizes']
)
predicted_mask = predicted_masks[0]
# Display the mask on the image
mask_image = show_mask_on_image(image, predicted_mask[:,max_iou_index], return_image=True)
return mask_image
# Function to overlay mask on the image
def show_mask_on_image(raw_image, mask, return_image=False):
if not isinstance(mask, torch.Tensor):
mask = torch.Tensor(mask)
if len(mask.shape) == 4:
mask = mask.squeeze()
fig, axes = plt.subplots(1, 1, figsize=(15, 15))
mask = mask.cpu().detach()
axes.imshow(np.array(raw_image))
show_mask(mask, axes)
axes.axis("off")
plt.show()
if return_image:
fig = plt.gcf()
fig.canvas.draw()
# Convert plot to image
img = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
img = img.reshape(fig.canvas.get_width_height()[::-1] + (3,))
img = Image.fromarray(img)
plt.close(fig)
return img
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown(
"""
<div style='text-align: center; font-family: "Times New Roman";'>
<h1 style='color: #FF6347;'>One Click Image Segmentation App</h1>
<h3 style='color: #4682B4;'>Model: SlimSAM-uniform-77</h3>
<h3 style='color: #32CD32;'>Made By: Md. Mahmudun Nabi</h3>
</div>
"""
)
with gr.Row():
img = gr.Image(type="pil", label="Input Image",height=400, width=600)
output_image = gr.Image(label="Masked Image")
img.select(get_pixel_coordinates, inputs=[img], outputs=[output_image])
if __name__ == "__main__":
demo.launch(share=False) |