import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import LabelEncoder from datasets import load_dataset import joblib import os import numpy as np # Define paths for the Random Forest model, TF-IDF vectorizer, and label encoder rf_model_path = 'random_forest_model.pkl' vectorizer_path = "tfidf_vectorizer.pkl" label_encoder_path = "label_encoder.pkl" multi_rf_model_path= "random_forest_multi_model.pkl" # Check if models and encoder exist if os.path.exists(rf_model_path) and os.path.exists(vectorizer_path) and os.path.exists(label_encoder_path) and os.path.exists(multi_rf_model_path): # Load the models if they already exist rf_single = joblib.load(rf_model_path) vectorizer = joblib.load(vectorizer_path) le = joblib.load(label_encoder_path) rf_multi = joblib.load(multi_rf_model_path) print("Random Forest model, vectorizer, and label encoder loaded from disk.") else: # Load the dataset ds = load_dataset('ahmedheakl/resume-atlas', cache_dir="C:/Users/dell/.cache/huggingface/datasets") # Create a DataFrame from the 'train' split df_train = pd.DataFrame(ds['train']) # Initialize the Label Encoder and encode the 'Category' labels le = LabelEncoder() df_train['Category_encoded'] = le.fit_transform(df_train['Category']) # Split the dataset into training and test sets X_train, X_test, y_train, y_test = train_test_split( df_train['Text'], df_train['Category_encoded'], test_size=0.2, random_state=42) # Initialize TF-IDF Vectorizer and transform the text data vectorizer = TfidfVectorizer(max_features=1000) X_train_tfidf = vectorizer.fit_transform(X_train) X_test_tfidf = vectorizer.transform(X_test) # Initialize and train the Random Forest models rf_single = RandomForestClassifier(n_estimators=100, random_state=42) rf_single.fit(X_train_tfidf, y_train) rf_multi = RandomForestClassifier(n_estimators=100, random_state=42) rf_multi.fit(X_train_tfidf, y_train) # Save the Random Forest models, TF-IDF vectorizer, and label encoder joblib.dump(rf_single, rf_model_path) joblib.dump(rf_multi, multi_rf_model_path) joblib.dump(vectorizer, vectorizer_path) joblib.dump(le, label_encoder_path) print("Random Forest model, vectorizer, and label encoder trained and saved to disk.") # Single-label classification function for Random Forest model def classify_text_rf(text): try: text_tfidf = vectorizer.transform([text]) predicted_class_index = rf_single.predict(text_tfidf)[0] predicted_category = le.inverse_transform([predicted_class_index])[0] return predicted_category except Exception as e: print(f"Error in classify_text_rf: {e}") return None # Multi-label classification function with top N predictions def classify_text_rf_multi(text, top_n=3): try: text_tfidf = vectorizer.transform([text]) probabilities = rf_multi.predict_proba(text_tfidf)[0] top_n_indices = np.argsort(probabilities)[::-1][:min(top_n, len(probabilities))] top_n_categories = le.inverse_transform(top_n_indices) return top_n_categories except Exception as e: print(f"Error in classify_text_rf_multi: {e}") return None