Spaces:
Running
Running
File size: 15,386 Bytes
90226e0 a78b279 340638d a78b279 90226e0 340638d 90226e0 340638d 90226e0 340638d 90226e0 340638d 90226e0 a78b279 90226e0 340638d a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 340638d a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 a78b279 90226e0 340638d 90226e0 aa5319f 90226e0 a78b279 aa5319f a78b279 90226e0 a78b279 aa5319f 90226e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import requests
import os
import sys
from pathlib import Path
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import geopandas as gpd
from pyproj.transformer import Transformer
import cv2
import asyncio
from matplotlib import patches as mpatches
from matplotlib import gridspec
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
from MapItAnywhere.mia.bev import get_bev
from MapItAnywhere.mia.fpv import get_fpv
from MapItAnywhere.mia.fpv import filters
from MapItAnywhere.mia import logger
def get_city_boundary(query, fetch_shape=False):
# Use Nominatim API to get the boundary of the city
base_url = "https://nominatim.openstreetmap.org/search"
params = {
'q': query,
'format': 'json',
'limit': 1,
'polygon_geojson': 1 if fetch_shape else 0
}
headers = {
'User-Agent': f'mapperceptionnet_{query}'
}
response = requests.get(base_url, params=params, headers=headers)
if response.status_code != 200:
logger.error(f"Nominatim error when fetching boundary data for {query}.\n"
f"Status code: {response.status_code}. Content: {response.content}")
return None
data = response.json()
if data is None:
logger.warn(f"No data returned by Nominatim for {query}")
return None
# Extract bbox data from the API response
bbox_data = data[0]['boundingbox']
bbox = {
'west': float(bbox_data[2]),
'south': float(bbox_data[0]),
'east': float(bbox_data[3]),
'north': float(bbox_data[1])
}
if fetch_shape:
# Extract GeoJSON boundary data from the API response
boundary_geojson = data[0]['geojson']
boundary_geojson = {
"type": "FeatureCollection",
"features": [
{"type": "Feature",
"properties": {},
"geometry": boundary_geojson}]
}
return bbox, boundary_geojson
else:
return bbox
def split_dataframe(df, chunk_size = 100):
chunks = list()
num_chunks = len(df) // chunk_size + 1
for i in range(num_chunks):
chunks.append(df[i*chunk_size:(i+1)*chunk_size])
return chunks
downloader = get_fpv.MapillaryDownloader(os.getenv("MLY_TOKEN"))
loop = asyncio.get_event_loop()
def generate_error_plot(error_message):
fig, ax = plt.subplots()
ax.text(0.5, 0.5, error_message, fontsize=12, va='center', ha='center', wrap=True)
ax.axis('off')
fig_img_path = 'fpv_bev.png'
fig.savefig(fig_img_path)
fig_img = plt.imread(fig_img_path)
return fig_img
def fetch(location, num_images, filter_undistort, disable_cam_filter, map_length, mpp):
TOTAL_LOOKED_INTO_LIMIT = 10000
################ FPV
bbox = get_city_boundary(query=location)
tiles = get_fpv.get_tiles_from_boundary(boundary_info=dict(bound_type="auto_bbox", bbox=bbox), zoom=14)
np.random.shuffle(tiles)
total_looked_into = 0
dfs_meta = list()
for tile in tiles:
image_points_response = loop.run_until_complete(downloader.get_tiles_image_points([tile]))
if image_points_response is None:
continue
try:
df = get_fpv.parse_image_points_json_data(image_points_response)
if len(df) == 0:
continue
total_looked_into += len(df)
df_split = split_dataframe(df, chunk_size=100)
for df in df_split:
image_ids = df["id"]
image_infos, num_fail = loop.run_until_complete(get_fpv.fetch_image_infos(image_ids, downloader, infos_dir))
df_meta = get_fpv.geojson_feature_list_to_pandas(image_infos.values())
# Some standardization of the data
df_meta["model"] = df_meta["model"].str.lower().str.replace(' ', '').str.replace('_', '')
df_meta["make"] = df_meta["make"].str.lower().str.replace(' ', '').str.replace('_', '')
if filter_undistort:
fp = no_cam_filter_pipeline if disable_cam_filter else filter_pipeline
df_meta = fp(df_meta)
dfs_meta.append(df_meta)
total_rows = sum([len(x) for x in dfs_meta])
if total_rows > num_images:
break
elif total_looked_into > TOTAL_LOOKED_INTO_LIMIT:
return generate_error_plot(f"Went through {total_looked_into} images and could not find images satisfying the filters."
"\nPlease rerun or run the data engine locally for bulk time consuming operations.")
if total_rows > num_images:
break
except:
pass
df_meta = pd.concat(dfs_meta)
df_meta = df_meta.sample(num_images)
# Calc derrivative attributes
df_meta["loc_discrepancy"] = filters.haversine_np(
lon1=df_meta["geometry.long"], lat1=df_meta["geometry.lat"],
lon2=df_meta["computed_geometry.long"], lat2=df_meta["computed_geometry.lat"]
)
df_meta["angle_discrepancy"] = filters.angle_dist(
df_meta["compass_angle"],
df_meta["computed_compass_angle"]
)
img_list_to_show = list()
for index, row in df_meta.iterrows():
print("Processing image", row["id"])
desc = list()
# Display attributes
keys = ["id", "geometry.long", "geometry.lat", "compass_angle",
"loc_discrepancy", "angle_discrepancy",
"make", "model", "camera_type",
"quality_score"]
for k in keys:
v = row[k]
if isinstance(v, float):
v = f"{v:.4f}"
bullet = f"{k}: {v}"
desc.append(bullet)
metadata_fmt = "\n".join(desc)
# yield metadata_fmt, None, None
image_urls = list(df_meta.set_index("id")["thumb_2048_url"].items())
num_fail = loop.run_until_complete(get_fpv.fetch_images_pixels(image_urls, downloader, raw_image_dir))
if num_fail > 0:
logger.error(f"Failed to download {num_fail} images.")
seq_to_image_ids = df_meta.groupby('sequence')['id'].agg(list).to_dict()
lon_center = (bbox['east'] + bbox['west']) / 2
lat_center = (bbox['north'] + bbox['south']) / 2
projection = get_fpv.Projection(lat_center, lon_center, max_extent=200e3)
df_meta.index = df_meta["id"]
image_infos = df_meta.to_dict(orient="index")
process_sequence_args = get_fpv.default_cfg
if filter_undistort:
for seq_id, seq_image_ids in seq_to_image_ids.items():
try:
d, pi = get_fpv.process_sequence(
seq_image_ids,
image_infos,
projection,
process_sequence_args,
raw_image_dir,
out_image_dir,
)
if d is None or pi is None:
raise Exception("process_sequence returned None")
except Exception as e:
logger.error(f"Failed to process sequence {seq_id} skipping it. Error: {repr(e)}.")
fpv = plt.imread(out_image_dir/ f"{row['id']}_undistorted.jpg")
else:
print("Loading raw image")
fpv = plt.imread(raw_image_dir/ f"{row['id']}.jpg")
# yield metadata_fmt, fpv, None
################ BEV
df = df_meta
# convert pandas dataframe to geopandas dataframe
gdf = gpd.GeoDataFrame(df,
geometry=gpd.points_from_xy(
df['computed_geometry.long'],
df['computed_geometry.lat']),
crs=4326)
# convert the geopandas dataframe to UTM
utm_crs = gdf.estimate_utm_crs()
gdf_utm = gdf.to_crs(utm_crs)
transformer = Transformer.from_crs(utm_crs, 4326)
# load OSM data, if available
padding = 50
# calculate the required distance from the center to the edge of the image
# so that the image will not be out of bounds when we rotate it
map_length = map_length
map_length = np.ceil(np.sqrt(map_length**2 + map_length**2))
distance = map_length * mpp
# create bounding boxes for each point
gdf_utm['bounding_box_utm_p1'] = gdf_utm.apply(lambda row: (
row.geometry.x - distance - padding,
row.geometry.y - distance - padding,
), axis=1)
gdf_utm['bounding_box_utm_p2'] = gdf_utm.apply(lambda row: (
row.geometry.x + distance + padding,
row.geometry.y + distance + padding,
), axis=1)
# convert the bounding box back to lat, long
gdf_utm['bounding_box_lat_long_p1'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p1']), axis=1)
gdf_utm['bounding_box_lat_long_p2'] = gdf_utm.apply(lambda row: transformer.transform(*row['bounding_box_utm_p2']), axis=1)
gdf_utm['bbox_min_lat'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[0])
gdf_utm['bbox_min_long'] = gdf_utm['bounding_box_lat_long_p1'].apply(lambda x: x[1])
gdf_utm['bbox_max_lat'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[0])
gdf_utm['bbox_max_long'] = gdf_utm['bounding_box_lat_long_p2'].apply(lambda x: x[1])
gdf_utm['bbox_formatted'] = gdf_utm.apply(lambda row: f"{row['bbox_min_long']},{row['bbox_min_lat']},{row['bbox_max_long']},{row['bbox_max_lat']}", axis=1)
# iterate over the dataframe and get BEV images
jobs = gdf_utm[['id', 'bbox_formatted', 'computed_compass_angle']] # only need the id and bbox_formatted columns for the jobs
jobs = jobs.to_dict(orient='records').copy()
get_bev.get_bev_from_bbox_worker_init(osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir,
"MapItAnywhere/mia/bev/styles/mia.yml", map_length, mpp,
None, True, False, True, True, 1)
for job_dict in jobs:
get_bev.get_bev_from_bbox_worker(job_dict)
bev = cv2.imread(rendered_mask_dir / f"{row['id']}.png")
bev = cv2.cvtColor(bev, cv2.COLOR_BGR2RGB)
print("BEV shape", bev.shape)
img_list_to_show_i = [fpv, bev, metadata_fmt]
img_list_to_show.append(img_list_to_show_i)
# Make plt figure
plt_row = len(img_list_to_show)
print("plt_row", plt_row)
plt_col = 3
for i in range(plt_row):
fpv, bev, metadata_fmt = img_list_to_show[i]
if i == 0:
imgs = [fpv, bev]
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H
ratios.append(0.5) # Metadata
figsize = [sum(ratios) * 4.5, 4.5 * plt_row]
dpi = 100
fig, ax = plt.subplots(
plt_row, plt_col, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
)
# Plot FPV image
if plt_row == 1:
ax0 = ax[0]
ax1 = ax[1]
ax2 = ax[2]
else:
ax0 = ax[i, 0]
ax1 = ax[i, 1]
ax2 = ax[i, 2]
ax0.imshow(fpv)
ax0.set_title("First Person View Image")
ax0.axis('off')
# Plot BEV image
ax1.imshow(bev)
# Put a white upward triangle at the center of the image
ax1.scatter(bev.shape[1]//2, bev.shape[0]//2, s=200, c='white', marker='^', edgecolors='black')
ax1.set_title("Bird's Eye View Map")
ax1.axis('off')
# Add legend to BEV image
class_colors = {
'Road': (68, 68, 68), # 0: Black
'Crossing': (244, 162, 97), # 1; Red
'Sidewalk': (233, 196, 106), # 2: Yellow
'Building': (231, 111, 81), # 5: Magenta
'Terrain': (42, 157, 143), # 7: Cyan
'Parking': (204, 204, 204), # 8: Dark Grey
}
patches = [mpatches.Patch(color=[c/255.0 for c in color], label=label) for label, color in class_colors.items()]
ax1.legend(handles=patches, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3)
# Plot metadata text
ax2.axis('off')
ax2.text(0.1, 0.5, metadata_fmt, fontsize=12, va='center', ha='left', wrap=True)
ax2.set_title("Metadata")
plt.tight_layout(pad=2.0)
# Save figure and then read
fig_img_path = 'fpv_bev.png'
fig.savefig(fig_img_path)
fig_img = plt.imread(fig_img_path)
return fig_img
filter_pipeline = filters.FilterPipeline.load_from_yaml("MapItAnywhere/mia/fpv/filter_pipelines/mia.yaml")
filter_pipeline.verbose=False
no_cam_filter_pipeline = filters.FilterPipeline.load_from_yaml("MapItAnywhere/mia/fpv/filter_pipelines/mia_rural.yaml")
no_cam_filter_pipeline.verbose=False
loc = Path(".")
infos_dir =loc / "infos_dir"
raw_image_dir = loc / "raw_images"
out_image_dir = loc / "images"
osm_cache_dir = loc / "osm_cache"
bev_dir = loc / "bev_raw"
semantic_mask_dir = loc / "semantic_masks"
rendered_mask_dir = loc / "rendered_semantic_masks"
all_dirs = [loc, osm_cache_dir, bev_dir, semantic_mask_dir, rendered_mask_dir, out_image_dir, raw_image_dir]
for d in all_dirs:
os.makedirs(d, exist_ok=True)
logger.info(f"Current working directory: {os.getcwd()}, listdir: {os.listdir('.')}")
description = """
<h2><center> <a href="https://mapitanywhere.github.io" target="_blank">Project Page</a> | <a href="https://github.com/MapItAnywhere/MapItAnywhere" target="_blank">Repository</a> \nUse our Data Engine to sample first-person view images and bird's-eye view semantic map pairs from locations worldwide. Simply pick a location to see the results! <center></h2>
</h3><h3 align="center">Please note that the Huggingface demo runs much slower than running locally. If the curation takes longer than 1 minute, please restart the space (see the dropdown menu at the top-right of the page). For faster bulk downloads and more stringent filtering, visit our repository and follow the data engine instructions to run the data curation locally.</h3>
"""
demo = gr.Interface(
fn=fetch,
inputs=[gr.Text("Pittsburgh, PA, United States", label="Location (City, {Optional: State,} Country)"),
gr.Number(value=1, label="Number of Data Pairs to Generate (Max: 3)", minimum=1, maximum=3),
gr.Checkbox(value=False, label="Filter out images with high pose discrepancy (Enabled in paper. Results in better robot position estimate, but slower.)"),
gr.Checkbox(value=False, label="Disable camera model filtering (Enabled in paper. Results in better quality labels, but slower.)"),
gr.Slider(minimum=64, maximum=512, step=1, label="BEV Dimension", value=224),
gr.Slider(minimum=0.1, maximum=2, label="Meters Per Pixel", value=0.5)],
outputs=[gr.Image(label="Data Pair")],
title="MapItAnywhere (MIA) Data Engine",
description=description,
)
logger.info("Starting server")
demo.launch(server_name="0.0.0.0", server_port=7860,share=False) |