Spaces:
Sleeping
Sleeping
File size: 7,361 Bytes
1bda668 8c60761 1bda668 8c60761 1bda668 8c60761 1bda668 8c60761 1bda668 8c60761 1bda668 8c60761 1bda668 8c60761 1bda668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
from types import SimpleNamespace
import pdfplumber
import logging
from langchain.docstore.document import Document
def prepare_table_config(crop_page):
"""Prepare table查找边界, 要求page为原始page
From https://github.com/jsvine/pdfplumber/issues/242
"""
page = crop_page.root_page # root/parent
cs = page.curves + page.edges
def curves_to_edges():
"""See https://github.com/jsvine/pdfplumber/issues/127"""
edges = []
for c in cs:
edges += pdfplumber.utils.rect_to_edges(c)
return edges
edges = curves_to_edges()
return {
"vertical_strategy": "explicit",
"horizontal_strategy": "explicit",
"explicit_vertical_lines": edges,
"explicit_horizontal_lines": edges,
"intersection_y_tolerance": 10,
}
def get_text_outside_table(crop_page):
ts = prepare_table_config(crop_page)
if len(ts["explicit_vertical_lines"]) == 0 or len(ts["explicit_horizontal_lines"]) == 0:
return crop_page
### Get the bounding boxes of the tables on the page.
bboxes = [table.bbox for table in crop_page.root_page.find_tables(table_settings=ts)]
def not_within_bboxes(obj):
"""Check if the object is in any of the table's bbox."""
def obj_in_bbox(_bbox):
"""See https://github.com/jsvine/pdfplumber/blob/stable/pdfplumber/table.py#L404"""
v_mid = (obj["top"] + obj["bottom"]) / 2
h_mid = (obj["x0"] + obj["x1"]) / 2
x0, top, x1, bottom = _bbox
return (h_mid >= x0) and (h_mid < x1) and (v_mid >= top) and (v_mid < bottom)
return not any(obj_in_bbox(__bbox) for __bbox in bboxes)
return crop_page.filter(not_within_bboxes)
# 请使用 LaTeX 表达公式,行内公式以 $ 包裹,行间公式以 $$ 包裹
extract_words = lambda page: page.extract_words(keep_blank_chars=True, y_tolerance=0, x_tolerance=1, extra_attrs=["fontname", "size", "object_type"])
# dict_keys(['text', 'x0', 'x1', 'top', 'doctop', 'bottom', 'upright', 'direction', 'fontname', 'size'])
def get_title_with_cropped_page(first_page):
title = [] # 处理标题
x0,top,x1,bottom = first_page.bbox # 获取页面边框
for word in extract_words(first_page):
word = SimpleNamespace(**word)
if word.size >= 14:
title.append(word.text)
title_bottom = word.bottom
elif word.text == "Abstract": # 获取页面abstract
top = word.top
user_info = [i["text"] for i in extract_words(first_page.within_bbox((x0,title_bottom,x1,top)))]
# 裁剪掉上半部分, within_bbox: full_included; crop: partial_included
return title, user_info, first_page.within_bbox((x0,top,x1,bottom))
def get_column_cropped_pages(pages, two_column=True):
new_pages = []
for page in pages:
if two_column:
left = page.within_bbox((0, 0, page.width/2, page.height),relative=True)
right = page.within_bbox((page.width/2, 0, page.width, page.height), relative=True)
new_pages.append(left)
new_pages.append(right)
else:
new_pages.append(page)
return new_pages
def parse_pdf(filename, two_column = True):
level = logging.getLogger().level
if level == logging.getLevelName("DEBUG"):
logging.getLogger().setLevel("INFO")
with pdfplumber.open(filename) as pdf:
title, user_info, first_page = get_title_with_cropped_page(pdf.pages[0])
new_pages = get_column_cropped_pages([first_page] + pdf.pages[1:], two_column)
chapters = []
# tuple (chapter_name, [pageid] (start,stop), chapter_text)
create_chapter = lambda page_start,name_top,name_bottom: SimpleNamespace(
name=[],
name_top=name_top,
name_bottom=name_bottom,
record_chapter_name = True,
page_start=page_start,
page_stop=None,
text=[],
)
cur_chapter = None
# 按页遍历PDF文档
for idx, page in enumerate(new_pages):
page = get_text_outside_table(page)
# 按行遍历页面文本
for word in extract_words(page):
word = SimpleNamespace(**word)
# 检查行文本是否以12号字体打印,如果是,则将其作为新章节开始
if word.size >= 11: # 出现chapter name
if cur_chapter is None:
cur_chapter = create_chapter(page.page_number, word.top, word.bottom)
elif not cur_chapter.record_chapter_name or (cur_chapter.name_bottom != cur_chapter.name_bottom and cur_chapter.name_top != cur_chapter.name_top):
# 不再继续写chapter name
cur_chapter.page_stop = page.page_number # stop id
chapters.append(cur_chapter)
# 重置当前chapter信息
cur_chapter = create_chapter(page.page_number, word.top, word.bottom)
# print(word.size, word.top, word.bottom, word.text)
cur_chapter.name.append(word.text)
else:
cur_chapter.record_chapter_name = False # chapter name 结束
cur_chapter.text.append(word.text)
else:
# 处理最后一个章节
cur_chapter.page_stop = page.page_number # stop id
chapters.append(cur_chapter)
for i in chapters:
logging.info(f"section: {i.name} pages:{i.page_start, i.page_stop} word-count:{len(i.text)}")
logging.debug(" ".join(i.text))
title = " ".join(title)
user_info = " ".join(user_info)
text = f"Article Title: {title}, Information:{user_info}\n"
for idx, chapter in enumerate(chapters):
chapter.name = " ".join(chapter.name)
text += f"The {idx}th Chapter {chapter.name}: " + " ".join(chapter.text) + "\n"
logging.getLogger().setLevel(level)
return Document(page_content=text, metadata={"title": title})
BASE_POINTS = """
1. Who are the authors?
2. What is the process of the proposed method?
3. What is the performance of the proposed method? Please note down its performance metrics.
4. What are the baseline models and their performances? Please note down these baseline methods.
5. What dataset did this paper use?
"""
READING_PROMPT = """
You are a researcher helper bot. You can help the user with research paper reading and summarizing. \n
Now I am going to send you a paper. You need to read it and summarize it for me part by part. \n
When you are reading, You need to focus on these key points:{}
"""
READING_PROMT_V2 = """
You are a researcher helper bot. You can help the user with research paper reading and summarizing. \n
Now I am going to send you a paper. You need to read it and summarize it for me part by part. \n
When you are reading, You need to focus on these key points:{},
And You need to generate a brief but informative title for this part.
Your return format:
- title: '...'
- summary: '...'
"""
SUMMARY_PROMPT = "You are a researcher helper bot. Now you need to read the summaries of a research paper."
if __name__ == '__main__':
# Test code
z = parse_pdf("./build/test.pdf")
print(z["user_info"])
print(z["title"]) |