Spaces:
Sleeping
Sleeping
File size: 8,300 Bytes
55e027c 104cf1c b9dc38b 104cf1c ce202f9 104cf1c 90ce14b 3c2937a 77f2c42 5e4ca56 ff3263f 0137c6b b9dc38b 77f2c42 3c2937a 8fdf34e ce202f9 8fdf34e ed31090 77f2c42 4475ab1 8fdf34e 75b3db6 8fdf34e ce202f9 6b15272 eb9d06b 4333f18 9f551dd ccade22 b8f3115 cc35102 b8f3115 cc35102 b8f3115 cc35102 b8f3115 cc35102 e930b75 02f41f3 3b2bedf 4b9ef74 3ac03d8 cef64b2 ccade22 d708c00 9c8c84b 75dddd5 7620bdc c6d16d4 ccade22 9c7114f ccade22 03f9025 18731f2 104cf1c 77f2c42 cc35102 77f2c42 cc35102 77f2c42 cc35102 77f2c42 cc35102 25b27e3 77f2c42 6a2dc28 77f2c42 be28103 c12b724 be28103 0bfc663 007393b be28103 8fdf34e 9c7114f 2cb5d92 be28103 ab74909 8fdf34e dbdf4db 8fdf34e be28103 8fdf34e ab74909 8fdf34e be28103 8fdf34e 9bfafbf f8a0305 6213fb0 da0fe02 6213fb0 9bfafbf 4f493c8 9bfafbf 4f493c8 9bfafbf 4f493c8 9bfafbf 4f493c8 3211445 4f493c8 9bfafbf 4f493c8 9bfafbf ab5870b 9bfafbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# -*- coding:utf-8 -*-
import os
from pathlib import Path
import gradio as gr
from .webui_locale import I18nAuto
i18n = I18nAuto() # internationalization
CHATGLM_MODEL = None
CHATGLM_TOKENIZER = None
LLAMA_MODEL = None
LLAMA_INFERENCER = None
# ChatGPT 设置
INITIAL_SYSTEM_PROMPT = "You are a helpful assistant."
API_HOST = "api.openai.com"
COMPLETION_URL = "https://api.openai.com/v1/chat/completions"
BALANCE_API_URL="https://api.openai.com/dashboard/billing/credit_grants"
USAGE_API_URL="https://api.openai.com/dashboard/billing/usage"
HISTORY_DIR = Path("history")
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"
# 错误信息
STANDARD_ERROR_MSG = i18n("☹️发生了错误:") # 错误信息的标准前缀
GENERAL_ERROR_MSG = i18n("获取对话时发生错误,请查看后台日志")
ERROR_RETRIEVE_MSG = i18n("请检查网络连接,或者API-Key是否有效。")
CONNECTION_TIMEOUT_MSG = i18n("连接超时,无法获取对话。") # 连接超时
READ_TIMEOUT_MSG = i18n("读取超时,无法获取对话。") # 读取超时
PROXY_ERROR_MSG = i18n("代理错误,无法获取对话。") # 代理错误
SSL_ERROR_PROMPT = i18n("SSL错误,无法获取对话。") # SSL 错误
NO_APIKEY_MSG = i18n("API key为空,请检查是否输入正确。") # API key 长度不足 51 位
NO_INPUT_MSG = i18n("请输入对话内容。") # 未输入对话内容
BILLING_NOT_APPLICABLE_MSG = i18n("账单信息不适用") # 本地运行的模型返回的账单信息
TIMEOUT_STREAMING = 60 # 流式对话时的超时时间
TIMEOUT_ALL = 200 # 非流式对话时的超时时间
ENABLE_STREAMING_OPTION = True # 是否启用选择选择是否实时显示回答的勾选框
HIDE_MY_KEY = False # 如果你想在UI中隐藏你的 API 密钥,将此值设置为 True
CONCURRENT_COUNT = 100 # 允许同时使用的用户数量
SIM_K = 5
INDEX_QUERY_TEMPRATURE = 1.0
CHUANHU_TITLE = i18n("川虎Chat 🚀")
CHUANHU_DESCRIPTION = i18n("由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536)、[明昭MZhao](https://space.bilibili.com/24807452) 和 [Keldos](https://github.com/Keldos-Li) 开发<br />访问川虎Chat的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本")
ONLINE_MODELS = [
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0301",
"gpt-3.5-turbo-0613",
"gpt-4",
"gpt-4-0314",
"gpt-4-0613",
"gpt-4-32k",
"gpt-4-32k-0314",
"gpt-4-32k-0613",
"川虎助理",
"川虎助理 Pro",
"GooglePaLM",
"xmchat",
"Azure OpenAI",
"yuanai-1.0-base_10B",
"yuanai-1.0-translate",
"yuanai-1.0-dialog",
"yuanai-1.0-rhythm_poems",
"minimax-abab4-chat",
"minimax-abab5-chat",
]
LOCAL_MODELS = [
"chatglm-6b",
"chatglm-6b-int4",
"chatglm-6b-int4-ge",
"chatglm2-6b",
"chatglm2-6b-int4",
"StableLM",
"MOSS",
"llama-7b-hf",
"llama-13b-hf",
"llama-30b-hf",
"llama-65b-hf",
]
if os.environ.get('HIDE_LOCAL_MODELS', 'false') == 'true':
MODELS = ONLINE_MODELS
else:
MODELS = ONLINE_MODELS + LOCAL_MODELS
DEFAULT_MODEL = 0
os.makedirs("models", exist_ok=True)
os.makedirs("lora", exist_ok=True)
os.makedirs("history", exist_ok=True)
for dir_name in os.listdir("models"):
if os.path.isdir(os.path.join("models", dir_name)):
if dir_name not in MODELS:
MODELS.append(dir_name)
MODEL_TOKEN_LIMIT = {
"gpt-3.5-turbo": 4096,
"gpt-3.5-turbo-16k": 16384,
"gpt-3.5-turbo-0301": 4096,
"gpt-3.5-turbo-0613": 4096,
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-32k": 32768,
"gpt-4-32k-0314": 32768,
"gpt-4-32k-0613": 32768
}
TOKEN_OFFSET = 1000 # 模型的token上限减去这个值,得到软上限。到达软上限之后,自动尝试减少token占用。
DEFAULT_TOKEN_LIMIT = 3000 # 默认的token上限
REDUCE_TOKEN_FACTOR = 0.5 # 与模型token上限想乘,得到目标token数。减少token占用时,将token占用减少到目标token数以下。
REPLY_LANGUAGES = [
"简体中文",
"繁體中文",
"English",
"日本語",
"Español",
"Français",
"Deutsch",
"한국어",
"跟随问题语言(不稳定)"
]
WEBSEARCH_PTOMPT_TEMPLATE = """\
Web search results:
{web_results}
Current date: {current_date}
Instructions: Using the provided web search results, write a comprehensive reply to the given query. Make sure to cite results using [[number](URL)] notation after the reference. If the provided search results refer to multiple subjects with the same name, write separate answers for each subject.
Query: {query}
Reply in {reply_language}
"""
PROMPT_TEMPLATE = """\
Context information is below.
---------------------
{context_str}
---------------------
Current date: {current_date}.
Using the provided context information, write a comprehensive reply to the given query.
Make sure to cite results using [number] notation after the reference.
If the provided context information refer to multiple subjects with the same name, write separate answers for each subject.
Use prior knowledge only if the given context didn't provide enough information.
Answer the question: {query_str}
Reply in {reply_language}
"""
REFINE_TEMPLATE = """\
The original question is as follows: {query_str}
We have provided an existing answer: {existing_answer}
We have the opportunity to refine the existing answer
(only if needed) with some more context below.
------------
{context_msg}
------------
Given the new context, refine the original answer to better
Reply in {reply_language}
If the context isn't useful, return the original answer.
"""
SUMMARIZE_PROMPT = """Write a concise summary of the following:
{text}
CONCISE SUMMARY IN 中文:"""
ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
START_OF_OUTPUT_MARK = "<!-- SOO IN MESSAGE -->"
END_OF_OUTPUT_MARK = "<!-- EOO IN MESSAGE -->"
small_and_beautiful_theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c50="#EBFAF2",
c100="#CFF3E1",
c200="#A8EAC8",
c300="#77DEA9",
c400="#3FD086",
c500="#02C160",
c600="#06AE56",
c700="#05974E",
c800="#057F45",
c900="#04673D",
c950="#2E5541",
name="small_and_beautiful",
),
secondary_hue=gr.themes.Color(
c50="#576b95",
c100="#576b95",
c200="#576b95",
c300="#576b95",
c400="#576b95",
c500="#576b95",
c600="#576b95",
c700="#576b95",
c800="#576b95",
c900="#576b95",
c950="#576b95",
),
neutral_hue=gr.themes.Color(
name="gray",
c50="#f6f7f8",
# c100="#f3f4f6",
c100="#F2F2F2",
c200="#e5e7eb",
c300="#d1d5db",
c400="#B2B2B2",
c500="#808080",
c600="#636363",
c700="#515151",
c800="#393939",
# c900="#272727",
c900="#2B2B2B",
c950="#171717",
),
radius_size=gr.themes.sizes.radius_sm,
).set(
# button_primary_background_fill="*primary_500",
button_primary_background_fill_dark="*primary_600",
# button_primary_background_fill_hover="*primary_400",
# button_primary_border_color="*primary_500",
button_primary_border_color_dark="*primary_600",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_50",
button_secondary_background_fill_dark="*neutral_900",
button_secondary_text_color="*neutral_800",
button_secondary_text_color_dark="white",
# background_fill_primary="#F7F7F7",
# background_fill_primary_dark="#1F1F1F",
# block_title_text_color="*primary_500",
block_title_background_fill_dark="*primary_900",
block_label_background_fill_dark="*primary_900",
input_background_fill="#F6F6F6",
chatbot_code_background_color="*neutral_950",
chatbot_code_background_color_dark="*neutral_950",
)
|