Spaces:
Sleeping
Sleeping
File size: 8,204 Bytes
77f2c42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from __future__ import annotations
from typing import TYPE_CHECKING, List
import logging
import json
import commentjson as cjson
import os
import sys
import requests
import urllib3
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from enum import Enum
from .presets import *
from .llama_func import *
from .utils import *
from . import shared
from .config import retrieve_proxy
from .base_model import BaseLLMModel, ModelType
class OpenAIClient(BaseLLMModel):
def __init__(
self, model_name, api_key, system_prompt=INITIAL_SYSTEM_PROMPT, temperature=1.0, top_p=1.0
) -> None:
super().__init__(model_name=model_name, temperature=temperature, top_p=top_p, system_prompt=system_prompt)
self.api_key = api_key
self.completion_url = shared.state.completion_url
self.usage_api_url = shared.state.usage_api_url
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
def get_answer_stream_iter(self):
response = self._get_response(stream=True)
if response is not None:
iter = self._decode_chat_response(response)
partial_text = ""
for i in iter:
partial_text += i
yield partial_text
else:
yield standard_error_msg + general_error_msg
def get_answer_at_once(self):
response = self._get_response()
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
total_token_count = response["usage"]["total_tokens"]
return content, total_token_count
def count_token(self, user_input):
input_token_count = count_token(construct_user(user_input))
if self.system_prompt is not None and len(self.all_token_counts) == 0:
system_prompt_token_count = count_token(construct_system(self.system_prompt))
return input_token_count + system_prompt_token_count
return input_token_count
def set_system_prompt(self, new_system_prompt):
self.system_prompt = new_system_prompt
def billing_info(self):
try:
curr_time = datetime.datetime.now()
last_day_of_month = get_last_day_of_month(curr_time).strftime("%Y-%m-%d")
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
usage_url = f"{self.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
try:
usage_data = self._get_billing_data(usage_url)
except Exception as e:
logging.error(f"获取API使用情况失败:"+str(e))
return f"**获取API使用情况失败**"
rounded_usage = "{:.5f}".format(usage_data['total_usage']/100)
return f"**本月使用金额** \u3000 ${rounded_usage}"
except requests.exceptions.ConnectTimeout:
status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
return status_text
except requests.exceptions.ReadTimeout:
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
return status_text
except Exception as e:
logging.error(f"获取API使用情况失败:"+str(e))
return standard_error_msg + error_retrieve_prompt
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
def _get_response(self, stream=False):
openai_api_key = self.api_key
system_prompt = self.system_prompt
history = self.history
logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET)
temperature = self.temperature
top_p = self.top_p
selected_model = self.model_name
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
if system_prompt is not None:
history = [construct_system(system_prompt), *history]
payload = {
"model": selected_model,
"messages": history, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": stream,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if stream:
timeout = timeout_streaming
else:
timeout = TIMEOUT_ALL
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.completion_url != COMPLETION_URL:
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
with retrieve_proxy():
try:
response = requests.post(
shared.state.completion_url,
headers=headers,
json=payload,
stream=stream,
timeout=timeout,
)
except:
return None
return response
def _get_billing_data(self, usage_url):
with retrieve_proxy():
response = requests.get(
usage_url,
headers=self.headers,
timeout=TIMEOUT_ALL,
)
if response.status_code == 200:
data = response.json()
return data
else:
raise Exception(f"API request failed with status code {response.status_code}: {response.text}")
def _decode_chat_response(self, response):
for chunk in response.iter_lines():
if chunk:
chunk = chunk.decode()
chunk_length = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
print(f"JSON解析错误,收到的内容: {chunk}")
continue
if chunk_length > 6 and "delta" in chunk["choices"][0]:
if chunk["choices"][0]["finish_reason"] == "stop":
break
try:
yield chunk["choices"][0]["delta"]["content"]
except Exception as e:
# logging.error(f"Error: {e}")
continue
def get_model(model_name, access_key=None, temprature=None, top_p=None, system_prompt = None) -> BaseLLMModel:
model_type = ModelType.get_type(model_name)
if model_type == ModelType.OpenAI:
model = OpenAIClient(model_name, access_key, system_prompt, temprature, top_p)
return model
if __name__=="__main__":
with open("config.json", "r") as f:
openai_api_key = cjson.load(f)["openai_api_key"]
client = OpenAIClient("gpt-3.5-turbo", openai_api_key)
chatbot = []
stream = False
# 测试账单功能
print(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
print(client.billing_info())
# 测试问答
print(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
question = "巴黎是中国的首都吗?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
print(i)
print(f"测试问答后history : {client.history}")
# 测试记忆力
print(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
question = "我刚刚问了你什么问题?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
print(i)
print(f"测试记忆力后history : {client.history}")
# 测试重试功能
print(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
for i in client.retry(chatbot=chatbot, stream=stream):
print(i)
print(f"重试后history : {client.history}")
# # 测试总结功能
# print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
# chatbot, msg = client.reduce_token_size(chatbot=chatbot)
# print(chatbot, msg)
# print(f"总结后history: {client.history}")
|