Spaces:
Sleeping
Sleeping
from __future__ import annotations | |
from typing import TYPE_CHECKING, List | |
import logging | |
import json | |
import commentjson as cjson | |
import os | |
import sys | |
import requests | |
import urllib3 | |
import platform | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
from tqdm import tqdm | |
import colorama | |
import asyncio | |
import aiohttp | |
from enum import Enum | |
import uuid | |
from ..presets import * | |
from ..index_func import * | |
from ..utils import * | |
from .. import shared | |
from ..config import retrieve_proxy, usage_limit, sensitive_id | |
from modules import config | |
from .base_model import BaseLLMModel, ModelType | |
class OpenAIClient(BaseLLMModel): | |
def __init__( | |
self, | |
model_name, | |
api_key, | |
system_prompt=INITIAL_SYSTEM_PROMPT, | |
temperature=1.0, | |
top_p=1.0, | |
user_name="" | |
) -> None: | |
super().__init__( | |
model_name=model_name, | |
temperature=temperature, | |
top_p=top_p, | |
system_prompt=system_prompt, | |
user=user_name | |
) | |
self.api_key = api_key | |
self.need_api_key = True | |
self._refresh_header() | |
def get_answer_stream_iter(self): | |
response = self._get_response(stream=True) | |
if response is not None: | |
iter = self._decode_chat_response(response) | |
partial_text = "" | |
for i in iter: | |
partial_text += i | |
yield partial_text | |
else: | |
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG | |
def get_answer_at_once(self): | |
response = self._get_response() | |
response = json.loads(response.text) | |
content = response["choices"][0]["message"]["content"] | |
total_token_count = response["usage"]["total_tokens"] | |
return content, total_token_count | |
def count_token(self, user_input): | |
input_token_count = count_token(construct_user(user_input)) | |
if self.system_prompt is not None and len(self.all_token_counts) == 0: | |
system_prompt_token_count = count_token( | |
construct_system(self.system_prompt) | |
) | |
return input_token_count + system_prompt_token_count | |
return input_token_count | |
def billing_info(self): | |
try: | |
curr_time = datetime.datetime.now() | |
last_day_of_month = get_last_day_of_month( | |
curr_time).strftime("%Y-%m-%d") | |
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d") | |
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}" | |
try: | |
usage_data = self._get_billing_data(usage_url) | |
except Exception as e: | |
# logging.error(f"获取API使用情况失败: " + str(e)) | |
if "Invalid authorization header" in str(e): | |
return i18n("**获取API使用情况失败**,需在填写`config.json`中正确填写sensitive_id") | |
elif "Incorrect API key provided: sess" in str(e): | |
return i18n("**获取API使用情况失败**,sensitive_id错误或已过期") | |
return i18n("**获取API使用情况失败**") | |
# rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100) | |
rounded_usage = round(usage_data["total_usage"] / 100, 5) | |
usage_percent = round(usage_data["total_usage"] / usage_limit, 2) | |
from ..webui import get_html | |
# return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}" | |
return get_html("billing_info.html").format( | |
label = i18n("本月使用金额"), | |
usage_percent = usage_percent, | |
rounded_usage = rounded_usage, | |
usage_limit = usage_limit | |
) | |
except requests.exceptions.ConnectTimeout: | |
status_text = ( | |
STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG | |
) | |
return status_text | |
except requests.exceptions.ReadTimeout: | |
status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG | |
return status_text | |
except Exception as e: | |
import traceback | |
traceback.print_exc() | |
logging.error(i18n("获取API使用情况失败:") + str(e)) | |
return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG | |
def set_token_upper_limit(self, new_upper_limit): | |
pass | |
# 在不开启多账号模式的时候,这个装饰器不会起作用 | |
def _get_response(self, stream=False): | |
openai_api_key = self.api_key | |
system_prompt = self.system_prompt | |
history = self.history | |
logging.debug(colorama.Fore.YELLOW + | |
f"{history}" + colorama.Fore.RESET) | |
headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {openai_api_key}", | |
} | |
if system_prompt is not None: | |
history = [construct_system(system_prompt), *history] | |
payload = { | |
"model": self.model_name, | |
"messages": history, | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"n": self.n_choices, | |
"stream": stream, | |
"presence_penalty": self.presence_penalty, | |
"frequency_penalty": self.frequency_penalty, | |
} | |
if self.max_generation_token is not None: | |
payload["max_tokens"] = self.max_generation_token | |
if self.stop_sequence is not None: | |
payload["stop"] = self.stop_sequence | |
if self.logit_bias is not None: | |
payload["logit_bias"] = self.logit_bias | |
if self.user_identifier: | |
payload["user"] = self.user_identifier | |
if stream: | |
timeout = TIMEOUT_STREAMING | |
else: | |
timeout = TIMEOUT_ALL | |
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求 | |
if shared.state.completion_url != COMPLETION_URL: | |
logging.debug(f"使用自定义API URL: {shared.state.completion_url}") | |
with retrieve_proxy(): | |
try: | |
response = requests.post( | |
shared.state.completion_url, | |
headers=headers, | |
json=payload, | |
stream=stream, | |
timeout=timeout, | |
) | |
except: | |
return None | |
return response | |
def _refresh_header(self): | |
self.headers = { | |
"Content-Type": "application/json", | |
"Authorization": f"Bearer {sensitive_id}", | |
} | |
def _get_billing_data(self, billing_url): | |
with retrieve_proxy(): | |
response = requests.get( | |
billing_url, | |
headers=self.headers, | |
timeout=TIMEOUT_ALL, | |
) | |
if response.status_code == 200: | |
data = response.json() | |
return data | |
else: | |
raise Exception( | |
f"API request failed with status code {response.status_code}: {response.text}" | |
) | |
def _decode_chat_response(self, response): | |
error_msg = "" | |
for chunk in response.iter_lines(): | |
if chunk: | |
chunk = chunk.decode() | |
chunk_length = len(chunk) | |
try: | |
chunk = json.loads(chunk[6:]) | |
except: | |
print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}") | |
error_msg += chunk | |
continue | |
if chunk_length > 6 and "delta" in chunk["choices"][0]: | |
if chunk["choices"][0]["finish_reason"] == "stop": | |
break | |
try: | |
yield chunk["choices"][0]["delta"]["content"] | |
except Exception as e: | |
# logging.error(f"Error: {e}") | |
continue | |
if error_msg: | |
raise Exception(error_msg) | |
def set_key(self, new_access_key): | |
ret = super().set_key(new_access_key) | |
self._refresh_header() | |
return ret | |
# def auto_name_chat_history(self, user_question, chatbot, user_name): | |
# return super().auto_name_chat_history(user_question, chatbot, user_name) | |
class ChatGLM_Client(BaseLLMModel): | |
def __init__(self, model_name, user_name="") -> None: | |
super().__init__(model_name=model_name, user=user_name) | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
global CHATGLM_TOKENIZER, CHATGLM_MODEL | |
if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None: | |
system_name = platform.system() | |
model_path = None | |
if os.path.exists("models"): | |
model_dirs = os.listdir("models") | |
if model_name in model_dirs: | |
model_path = f"models/{model_name}" | |
if model_path is not None: | |
model_source = model_path | |
else: | |
model_source = f"THUDM/{model_name}" | |
CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained( | |
model_source, trust_remote_code=True | |
) | |
quantified = False | |
if "int4" in model_name: | |
quantified = True | |
model = AutoModel.from_pretrained( | |
model_source, trust_remote_code=True | |
) | |
if torch.cuda.is_available(): | |
# run on CUDA | |
logging.info("CUDA is available, using CUDA") | |
model = model.half().cuda() | |
# mps加速还存在一些问题,暂时不使用 | |
elif system_name == "Darwin" and model_path is not None and not quantified: | |
logging.info("Running on macOS, using MPS") | |
# running on macOS and model already downloaded | |
model = model.half().to("mps") | |
else: | |
logging.info("GPU is not available, using CPU") | |
model = model.float() | |
model = model.eval() | |
CHATGLM_MODEL = model | |
def _get_glm_style_input(self): | |
history = [x["content"] for x in self.history] | |
query = history.pop() | |
logging.debug(colorama.Fore.YELLOW + | |
f"{history}" + colorama.Fore.RESET) | |
assert ( | |
len(history) % 2 == 0 | |
), f"History should be even length. current history is: {history}" | |
history = [[history[i], history[i + 1]] | |
for i in range(0, len(history), 2)] | |
return history, query | |
def get_answer_at_once(self): | |
history, query = self._get_glm_style_input() | |
response, _ = CHATGLM_MODEL.chat( | |
CHATGLM_TOKENIZER, query, history=history) | |
return response, len(response) | |
def get_answer_stream_iter(self): | |
history, query = self._get_glm_style_input() | |
for response, history in CHATGLM_MODEL.stream_chat( | |
CHATGLM_TOKENIZER, | |
query, | |
history, | |
max_length=self.token_upper_limit, | |
top_p=self.top_p, | |
temperature=self.temperature, | |
): | |
yield response | |
class LLaMA_Client(BaseLLMModel): | |
def __init__( | |
self, | |
model_name, | |
lora_path=None, | |
user_name="" | |
) -> None: | |
super().__init__(model_name=model_name, user=user_name) | |
from lmflow.datasets.dataset import Dataset | |
from lmflow.pipeline.auto_pipeline import AutoPipeline | |
from lmflow.models.auto_model import AutoModel | |
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments | |
self.max_generation_token = 1000 | |
self.end_string = "\n\n" | |
# We don't need input data | |
data_args = DatasetArguments(dataset_path=None) | |
self.dataset = Dataset(data_args) | |
self.system_prompt = "" | |
global LLAMA_MODEL, LLAMA_INFERENCER | |
if LLAMA_MODEL is None or LLAMA_INFERENCER is None: | |
model_path = None | |
if os.path.exists("models"): | |
model_dirs = os.listdir("models") | |
if model_name in model_dirs: | |
model_path = f"models/{model_name}" | |
if model_path is not None: | |
model_source = model_path | |
else: | |
model_source = f"decapoda-research/{model_name}" | |
# raise Exception(f"models目录下没有这个模型: {model_name}") | |
if lora_path is not None: | |
lora_path = f"lora/{lora_path}" | |
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, | |
use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True) | |
pipeline_args = InferencerArguments( | |
local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16') | |
with open(pipeline_args.deepspeed, "r", encoding="utf-8") as f: | |
ds_config = json.load(f) | |
LLAMA_MODEL = AutoModel.get_model( | |
model_args, | |
tune_strategy="none", | |
ds_config=ds_config, | |
) | |
LLAMA_INFERENCER = AutoPipeline.get_pipeline( | |
pipeline_name="inferencer", | |
model_args=model_args, | |
data_args=data_args, | |
pipeline_args=pipeline_args, | |
) | |
def _get_llama_style_input(self): | |
history = [] | |
instruction = "" | |
if self.system_prompt: | |
instruction = (f"Instruction: {self.system_prompt}\n") | |
for x in self.history: | |
if x["role"] == "user": | |
history.append(f"{instruction}Input: {x['content']}") | |
else: | |
history.append(f"Output: {x['content']}") | |
context = "\n\n".join(history) | |
context += "\n\nOutput: " | |
return context | |
def get_answer_at_once(self): | |
context = self._get_llama_style_input() | |
input_dataset = self.dataset.from_dict( | |
{"type": "text_only", "instances": [{"text": context}]} | |
) | |
output_dataset = LLAMA_INFERENCER.inference( | |
model=LLAMA_MODEL, | |
dataset=input_dataset, | |
max_new_tokens=self.max_generation_token, | |
temperature=self.temperature, | |
) | |
response = output_dataset.to_dict()["instances"][0]["text"] | |
return response, len(response) | |
def get_answer_stream_iter(self): | |
context = self._get_llama_style_input() | |
partial_text = "" | |
step = 1 | |
for _ in range(0, self.max_generation_token, step): | |
input_dataset = self.dataset.from_dict( | |
{"type": "text_only", "instances": [ | |
{"text": context + partial_text}]} | |
) | |
output_dataset = LLAMA_INFERENCER.inference( | |
model=LLAMA_MODEL, | |
dataset=input_dataset, | |
max_new_tokens=step, | |
temperature=self.temperature, | |
) | |
response = output_dataset.to_dict()["instances"][0]["text"] | |
if response == "" or response == self.end_string: | |
break | |
partial_text += response | |
yield partial_text | |
class XMChat(BaseLLMModel): | |
def __init__(self, api_key, user_name=""): | |
super().__init__(model_name="xmchat", user=user_name) | |
self.api_key = api_key | |
self.session_id = None | |
self.reset() | |
self.image_bytes = None | |
self.image_path = None | |
self.xm_history = [] | |
self.url = "https://xmbot.net/web" | |
self.last_conv_id = None | |
def reset(self): | |
self.session_id = str(uuid.uuid4()) | |
self.last_conv_id = None | |
return [], "已重置" | |
def image_to_base64(self, image_path): | |
# 打开并加载图片 | |
img = Image.open(image_path) | |
# 获取图片的宽度和高度 | |
width, height = img.size | |
# 计算压缩比例,以确保最长边小于4096像素 | |
max_dimension = 2048 | |
scale_ratio = min(max_dimension / width, max_dimension / height) | |
if scale_ratio < 1: | |
# 按压缩比例调整图片大小 | |
new_width = int(width * scale_ratio) | |
new_height = int(height * scale_ratio) | |
img = img.resize((new_width, new_height), Image.ANTIALIAS) | |
# 将图片转换为jpg格式的二进制数据 | |
buffer = BytesIO() | |
if img.mode == "RGBA": | |
img = img.convert("RGB") | |
img.save(buffer, format='JPEG') | |
binary_image = buffer.getvalue() | |
# 对二进制数据进行Base64编码 | |
base64_image = base64.b64encode(binary_image).decode('utf-8') | |
return base64_image | |
def try_read_image(self, filepath): | |
def is_image_file(filepath): | |
# 判断文件是否为图片 | |
valid_image_extensions = [ | |
".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"] | |
file_extension = os.path.splitext(filepath)[1].lower() | |
return file_extension in valid_image_extensions | |
if is_image_file(filepath): | |
logging.info(f"读取图片文件: {filepath}") | |
self.image_bytes = self.image_to_base64(filepath) | |
self.image_path = filepath | |
else: | |
self.image_bytes = None | |
self.image_path = None | |
def like(self): | |
if self.last_conv_id is None: | |
return "点赞失败,你还没发送过消息" | |
data = { | |
"uuid": self.last_conv_id, | |
"appraise": "good" | |
} | |
requests.post(self.url, json=data) | |
return "👍点赞成功,感谢反馈~" | |
def dislike(self): | |
if self.last_conv_id is None: | |
return "点踩失败,你还没发送过消息" | |
data = { | |
"uuid": self.last_conv_id, | |
"appraise": "bad" | |
} | |
requests.post(self.url, json=data) | |
return "👎点踩成功,感谢反馈~" | |
def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot): | |
fake_inputs = real_inputs | |
display_append = "" | |
limited_context = False | |
return limited_context, fake_inputs, display_append, real_inputs, chatbot | |
def handle_file_upload(self, files, chatbot, language): | |
"""if the model accepts multi modal input, implement this function""" | |
if files: | |
for file in files: | |
if file.name: | |
logging.info(f"尝试读取图像: {file.name}") | |
self.try_read_image(file.name) | |
if self.image_path is not None: | |
chatbot = chatbot + [((self.image_path,), None)] | |
if self.image_bytes is not None: | |
logging.info("使用图片作为输入") | |
# XMChat的一轮对话中实际上只能处理一张图片 | |
self.reset() | |
conv_id = str(uuid.uuid4()) | |
data = { | |
"user_id": self.api_key, | |
"session_id": self.session_id, | |
"uuid": conv_id, | |
"data_type": "imgbase64", | |
"data": self.image_bytes | |
} | |
response = requests.post(self.url, json=data) | |
response = json.loads(response.text) | |
logging.info(f"图片回复: {response['data']}") | |
return None, chatbot, None | |
def get_answer_at_once(self): | |
question = self.history[-1]["content"] | |
conv_id = str(uuid.uuid4()) | |
self.last_conv_id = conv_id | |
data = { | |
"user_id": self.api_key, | |
"session_id": self.session_id, | |
"uuid": conv_id, | |
"data_type": "text", | |
"data": question | |
} | |
response = requests.post(self.url, json=data) | |
try: | |
response = json.loads(response.text) | |
return response["data"], len(response["data"]) | |
except Exception as e: | |
return response.text, len(response.text) | |
def get_model( | |
model_name, | |
lora_model_path=None, | |
access_key=None, | |
temperature=None, | |
top_p=None, | |
system_prompt=None, | |
user_name="" | |
) -> BaseLLMModel: | |
msg = i18n("模型设置为了:") + f" {model_name}" | |
model_type = ModelType.get_type(model_name) | |
lora_selector_visibility = False | |
lora_choices = [] | |
dont_change_lora_selector = False | |
if model_type != ModelType.OpenAI: | |
config.local_embedding = True | |
# del current_model.model | |
model = None | |
chatbot = gr.Chatbot.update(label=model_name) | |
try: | |
if model_type == ModelType.OpenAI: | |
logging.info(f"正在加载OpenAI模型: {model_name}") | |
access_key = os.environ.get("OPENAI_API_KEY", access_key) | |
model = OpenAIClient( | |
model_name=model_name, | |
api_key=access_key, | |
system_prompt=system_prompt, | |
temperature=temperature, | |
top_p=top_p, | |
user_name=user_name, | |
) | |
elif model_type == ModelType.ChatGLM: | |
logging.info(f"正在加载ChatGLM模型: {model_name}") | |
model = ChatGLM_Client(model_name, user_name=user_name) | |
elif model_type == ModelType.LLaMA and lora_model_path == "": | |
msg = f"现在请为 {model_name} 选择LoRA模型" | |
logging.info(msg) | |
lora_selector_visibility = True | |
if os.path.isdir("lora"): | |
lora_choices = get_file_names_dropdown_by_pinyin( | |
"lora", filetypes=[""]) | |
lora_choices = ["No LoRA"] + lora_choices | |
elif model_type == ModelType.LLaMA and lora_model_path != "": | |
logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}") | |
dont_change_lora_selector = True | |
if lora_model_path == "No LoRA": | |
lora_model_path = None | |
msg += " + No LoRA" | |
else: | |
msg += f" + {lora_model_path}" | |
model = LLaMA_Client( | |
model_name, lora_model_path, user_name=user_name) | |
elif model_type == ModelType.XMChat: | |
if os.environ.get("XMCHAT_API_KEY") != "": | |
access_key = os.environ.get("XMCHAT_API_KEY") | |
model = XMChat(api_key=access_key, user_name=user_name) | |
elif model_type == ModelType.StableLM: | |
from .StableLM import StableLM_Client | |
model = StableLM_Client(model_name, user_name=user_name) | |
elif model_type == ModelType.MOSS: | |
from .MOSS import MOSS_Client | |
model = MOSS_Client(model_name, user_name=user_name) | |
elif model_type == ModelType.YuanAI: | |
from .inspurai import Yuan_Client | |
model = Yuan_Client(model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt) | |
elif model_type == ModelType.Minimax: | |
from .minimax import MiniMax_Client | |
if os.environ.get("MINIMAX_API_KEY") != "": | |
access_key = os.environ.get("MINIMAX_API_KEY") | |
model = MiniMax_Client(model_name, api_key=access_key, user_name=user_name, system_prompt=system_prompt) | |
elif model_type == ModelType.ChuanhuAgent: | |
from .ChuanhuAgent import ChuanhuAgent_Client | |
model = ChuanhuAgent_Client(model_name, access_key, user_name=user_name) | |
elif model_type == ModelType.GooglePaLM: | |
from .Google_PaLM import Google_PaLM_Client | |
access_key = os.environ.get("GOOGLE_PALM_API_KEY", access_key) | |
model = Google_PaLM_Client(model_name, access_key, user_name=user_name) | |
elif model_type == ModelType.LangchainChat: | |
from .azure import Azure_OpenAI_Client | |
model = Azure_OpenAI_Client(model_name, user_name=user_name) | |
elif model_type == ModelType.Midjourney: | |
from .midjourney import Midjourney_Client | |
mj_proxy_api_secret = os.getenv("MIDJOURNEY_PROXY_API_SECRET") | |
model = Midjourney_Client(model_name, mj_proxy_api_secret, user_name=user_name) | |
elif model_type == ModelType.Spark: | |
from .spark import Spark_Client | |
model = Spark_Client(model_name, os.getenv("SPARK_APPID"), os.getenv("SPARK_API_KEY"), os.getenv("SPARK_API_SECRET"), user_name=user_name) | |
elif model_type == ModelType.Unknown: | |
raise ValueError(f"未知模型: {model_name}") | |
logging.info(msg) | |
except Exception as e: | |
import traceback | |
traceback.print_exc() | |
msg = f"{STANDARD_ERROR_MSG}: {e}" | |
presudo_key = hide_middle_chars(access_key) | |
if dont_change_lora_selector: | |
return model, msg, chatbot, gr.update(), access_key, presudo_key | |
else: | |
return model, msg, chatbot, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility), access_key, presudo_key | |
if __name__ == "__main__": | |
with open("config.json", "r", encoding="utf-8") as f: | |
openai_api_key = cjson.load(f)["openai_api_key"] | |
# set logging level to debug | |
logging.basicConfig(level=logging.DEBUG) | |
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key) | |
client = get_model(model_name="chatglm-6b-int4") | |
chatbot = [] | |
stream = False | |
# 测试账单功能 | |
logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET) | |
logging.info(client.billing_info()) | |
# 测试问答 | |
logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET) | |
question = "巴黎是中国的首都吗?" | |
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream): | |
logging.info(i) | |
logging.info(f"测试问答后history : {client.history}") | |
# 测试记忆力 | |
logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET) | |
question = "我刚刚问了你什么问题?" | |
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream): | |
logging.info(i) | |
logging.info(f"测试记忆力后history : {client.history}") | |
# 测试重试功能 | |
logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET) | |
for i in client.retry(chatbot=chatbot, stream=stream): | |
logging.info(i) | |
logging.info(f"重试后history : {client.history}") | |
# # 测试总结功能 | |
# print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET) | |
# chatbot, msg = client.reduce_token_size(chatbot=chatbot) | |
# print(chatbot, msg) | |
# print(f"总结后history: {client.history}") | |