Spaces:
Sleeping
Sleeping
import os | |
import logging | |
from llama_index import download_loader | |
from llama_index import ( | |
Document, | |
LLMPredictor, | |
PromptHelper, | |
QuestionAnswerPrompt, | |
RefinePrompt, | |
) | |
import colorama | |
import PyPDF2 | |
from tqdm import tqdm | |
from modules.presets import * | |
from modules.utils import * | |
def get_index_name(file_src): | |
file_paths = [x.name for x in file_src] | |
file_paths.sort(key=lambda x: os.path.basename(x)) | |
md5_hash = hashlib.md5() | |
for file_path in file_paths: | |
with open(file_path, "rb") as f: | |
while chunk := f.read(8192): | |
md5_hash.update(chunk) | |
return md5_hash.hexdigest() | |
def block_split(text): | |
blocks = [] | |
while len(text) > 0: | |
blocks.append(Document(text[:1000])) | |
text = text[1000:] | |
return blocks | |
def get_documents(file_src): | |
documents = [] | |
logging.debug("Loading documents...") | |
logging.debug(f"file_src: {file_src}") | |
for file in file_src: | |
logging.info(f"loading file: {file.name}") | |
if os.path.splitext(file.name)[1] == ".pdf": | |
logging.debug("Loading PDF...") | |
try: | |
from modules.pdf_func import parse_pdf | |
from modules.config import advance_docs | |
two_column = advance_docs["pdf"].get("two_column", False) | |
pdftext = parse_pdf(file.name, two_column).text | |
except: | |
pdftext = "" | |
with open(file.name, 'rb') as pdfFileObj: | |
pdfReader = PyPDF2.PdfReader(pdfFileObj) | |
for page in tqdm(pdfReader.pages): | |
pdftext += page.extract_text() | |
text_raw = pdftext | |
elif os.path.splitext(file.name)[1] == ".docx": | |
logging.debug("Loading DOCX...") | |
DocxReader = download_loader("DocxReader") | |
loader = DocxReader() | |
text_raw = loader.load_data(file=file.name)[0].text | |
elif os.path.splitext(file.name)[1] == ".epub": | |
logging.debug("Loading EPUB...") | |
EpubReader = download_loader("EpubReader") | |
loader = EpubReader() | |
text_raw = loader.load_data(file=file.name)[0].text | |
else: | |
logging.debug("Loading text file...") | |
with open(file.name, "r", encoding="utf-8") as f: | |
text_raw = f.read() | |
text = add_space(text_raw) | |
# text = block_split(text) | |
# documents += text | |
documents += [Document(text)] | |
logging.debug("Documents loaded.") | |
return documents | |
def construct_index( | |
api_key, | |
file_src, | |
max_input_size=4096, | |
num_outputs=5, | |
max_chunk_overlap=20, | |
chunk_size_limit=600, | |
embedding_limit=None, | |
separator=" " | |
): | |
from langchain.chat_models import ChatOpenAI | |
from llama_index import GPTSimpleVectorIndex, ServiceContext | |
os.environ["OPENAI_API_KEY"] = api_key | |
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit | |
embedding_limit = None if embedding_limit == 0 else embedding_limit | |
separator = " " if separator == "" else separator | |
llm_predictor = LLMPredictor( | |
llm=ChatOpenAI(model_name="gpt-3.5-turbo-0301", openai_api_key=api_key) | |
) | |
prompt_helper = PromptHelper(max_input_size = max_input_size, num_output = num_outputs, max_chunk_overlap = max_chunk_overlap, embedding_limit=embedding_limit, chunk_size_limit=600, separator=separator) | |
index_name = get_index_name(file_src) | |
if os.path.exists(f"./index/{index_name}.json"): | |
logging.info("找到了缓存的索引文件,加载中……") | |
return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json") | |
else: | |
try: | |
documents = get_documents(file_src) | |
logging.info("构建索引中……") | |
with retrieve_proxy(): | |
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper, chunk_size_limit=chunk_size_limit) | |
index = GPTSimpleVectorIndex.from_documents( | |
documents, service_context=service_context | |
) | |
logging.debug("索引构建完成!") | |
os.makedirs("./index", exist_ok=True) | |
index.save_to_disk(f"./index/{index_name}.json") | |
logging.debug("索引已保存至本地!") | |
return index | |
except Exception as e: | |
logging.error("索引构建失败!", e) | |
print(e) | |
return None | |
def add_space(text): | |
punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "} | |
for cn_punc, en_punc in punctuations.items(): | |
text = text.replace(cn_punc, en_punc) | |
return text | |