prinvest_mate / modules /models.py
Tuchuanhuhuhu
加入了llama模型支持
7620bdc
raw
history blame
20.4 kB
from __future__ import annotations
from typing import TYPE_CHECKING, List
import logging
import json
import commentjson as cjson
import os
import sys
import requests
import urllib3
import platform
from dataclasses import dataclass, field
from transformers import HfArgumentParser
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import asyncio
import aiohttp
from enum import Enum
from .presets import *
from .llama_func import *
from .utils import *
from . import shared
from .config import retrieve_proxy
from modules import config
from .base_model import BaseLLMModel, ModelType
class OpenAIClient(BaseLLMModel):
def __init__(
self,
model_name,
api_key,
system_prompt=INITIAL_SYSTEM_PROMPT,
temperature=1.0,
top_p=1.0,
) -> None:
super().__init__(
model_name=model_name,
temperature=temperature,
top_p=top_p,
system_prompt=system_prompt,
)
self.api_key = api_key
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
def get_answer_stream_iter(self):
response = self._get_response(stream=True)
if response is not None:
iter = self._decode_chat_response(response)
partial_text = ""
for i in iter:
partial_text += i
yield partial_text
else:
yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
def get_answer_at_once(self):
response = self._get_response()
response = json.loads(response.text)
content = response["choices"][0]["message"]["content"]
total_token_count = response["usage"]["total_tokens"]
return content, total_token_count
def count_token(self, user_input):
input_token_count = count_token(construct_user(user_input))
if self.system_prompt is not None and len(self.all_token_counts) == 0:
system_prompt_token_count = count_token(
construct_system(self.system_prompt)
)
return input_token_count + system_prompt_token_count
return input_token_count
def billing_info(self):
try:
curr_time = datetime.datetime.now()
last_day_of_month = get_last_day_of_month(curr_time).strftime("%Y-%m-%d")
first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
try:
usage_data = self._get_billing_data(usage_url)
except Exception as e:
logging.error(f"获取API使用情况失败:" + str(e))
return f"**获取API使用情况失败**"
rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
return f"**本月使用金额** \u3000 ${rounded_usage}"
except requests.exceptions.ConnectTimeout:
status_text = (
STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
)
return status_text
except requests.exceptions.ReadTimeout:
status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
return status_text
except Exception as e:
logging.error(f"获取API使用情况失败:" + str(e))
return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG
def set_token_upper_limit(self, new_upper_limit):
pass
@shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
def _get_response(self, stream=False):
openai_api_key = self.api_key
system_prompt = self.system_prompt
history = self.history
logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}",
}
if system_prompt is not None:
history = [construct_system(system_prompt), *history]
payload = {
"model": self.model_name,
"messages": history,
"temperature": self.temperature,
"top_p": self.top_p,
"n": self.n_choices,
"stream": stream,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
}
if self.max_generation_token is not None:
payload["max_tokens"] = self.max_generation_token
if self.stop_sequence is not None:
payload["stop"] = self.stop_sequence
if self.logit_bias is not None:
payload["logit_bias"] = self.logit_bias
if self.user_identifier is not None:
payload["user"] = self.user_identifier
if stream:
timeout = TIMEOUT_STREAMING
else:
timeout = TIMEOUT_ALL
# 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
if shared.state.completion_url != COMPLETION_URL:
logging.info(f"使用自定义API URL: {shared.state.completion_url}")
with retrieve_proxy():
try:
response = requests.post(
shared.state.completion_url,
headers=headers,
json=payload,
stream=stream,
timeout=timeout,
)
except:
return None
return response
def _get_billing_data(self, usage_url):
with retrieve_proxy():
response = requests.get(
usage_url,
headers=self.headers,
timeout=TIMEOUT_ALL,
)
if response.status_code == 200:
data = response.json()
return data
else:
raise Exception(
f"API request failed with status code {response.status_code}: {response.text}"
)
def _decode_chat_response(self, response):
for chunk in response.iter_lines():
if chunk:
chunk = chunk.decode()
chunk_length = len(chunk)
try:
chunk = json.loads(chunk[6:])
except json.JSONDecodeError:
print(f"JSON解析错误,收到的内容: {chunk}")
continue
if chunk_length > 6 and "delta" in chunk["choices"][0]:
if chunk["choices"][0]["finish_reason"] == "stop":
break
try:
yield chunk["choices"][0]["delta"]["content"]
except Exception as e:
# logging.error(f"Error: {e}")
continue
class ChatGLM_Client(BaseLLMModel):
def __init__(self, model_name) -> None:
super().__init__(model_name=model_name)
from transformers import AutoTokenizer, AutoModel
import torch
system_name = platform.system()
model_path=None
if os.path.exists("models"):
model_dirs = os.listdir("models")
if model_name in model_dirs:
model_path = f"models/{model_name}"
if model_path is not None:
model_source = model_path
else:
model_source = f"THUDM/{model_name}"
self.tokenizer = AutoTokenizer.from_pretrained(
model_source, trust_remote_code=True
)
quantified = False
if "int4" in model_name:
quantified = True
if quantified:
model = AutoModel.from_pretrained(
model_source, trust_remote_code=True
).float()
else:
model = AutoModel.from_pretrained(
model_source, trust_remote_code=True
).half()
if torch.cuda.is_available():
# run on CUDA
logging.info("CUDA is available, using CUDA")
model = model.cuda()
# mps加速还存在一些问题,暂时不使用
elif system_name == "Darwin" and model_path is not None and not quantified:
logging.info("Running on macOS, using MPS")
# running on macOS and model already downloaded
model = model.to("mps")
else:
logging.info("GPU is not available, using CPU")
model = model.eval()
self.model = model
def _get_glm_style_input(self):
history = [x["content"] for x in self.history]
query = history.pop()
logging.debug(colorama.Fore.YELLOW + f"{history}" + colorama.Fore.RESET)
assert (
len(history) % 2 == 0
), f"History should be even length. current history is: {history}"
history = [[history[i], history[i + 1]] for i in range(0, len(history), 2)]
return history, query
def get_answer_at_once(self):
history, query = self._get_glm_style_input()
response, _ = self.model.chat(self.tokenizer, query, history=history)
return response, len(response)
def get_answer_stream_iter(self):
history, query = self._get_glm_style_input()
for response, history in self.model.stream_chat(
self.tokenizer,
query,
history,
max_length=self.token_upper_limit,
top_p=self.top_p,
temperature=self.temperature,
):
yield response
@dataclass
class ChatbotArguments:
pass
class LLaMA_Client(BaseLLMModel):
def __init__(
self,
model_name,
lora_path=None,
) -> None:
super().__init__(model_name=model_name)
from lmflow.datasets.dataset import Dataset
from lmflow.pipeline.auto_pipeline import AutoPipeline
from lmflow.models.auto_model import AutoModel
from lmflow.args import ModelArguments, DatasetArguments, AutoArguments, InferencerArguments
model_path = None
if os.path.exists("models"):
model_dirs = os.listdir("models")
if model_name in model_dirs:
model_path = f"models/{model_name}"
if model_path is not None:
model_source = model_path
else:
raise Exception(f"models目录下没有这个模型: {model_name}")
self.max_generation_token = 1000
pipeline_name = "inferencer"
PipelineArguments = AutoArguments.get_pipeline_args_class(pipeline_name)
"""
if [ $# -ge 2 ]; then
lora_args="--lora_model_path $2"
fi
CUDA_VISIBLE_DEVICES=2 \
deepspeed examples/chatbot.py \
--deepspeed configs/ds_config_chatbot.json \
--model_name_or_path ${model} \
${lora_args}
model_args:
ModelArguments(model_name_or_path='/home/guest/llm_models/llama/7B', lora_model_path='/home/guest/llm_models/lora/baize-lora-7B', model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
pipeline_args:
InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
"""
# parser = HfArgumentParser(
# (
# ModelArguments,
# PipelineArguments,
# ChatbotArguments,
# )
# )
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
pipeline_args = InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
# model_args, pipeline_args, chatbot_args = parser.parse_args_into_dataclasses()
with open(pipeline_args.deepspeed, "r") as f:
ds_config = json.load(f)
self.model = AutoModel.get_model(
model_args,
tune_strategy="none",
ds_config=ds_config,
)
# We don't need input data, we will read interactively from stdin
data_args = DatasetArguments(dataset_path=None)
self.dataset = Dataset(data_args)
self.inferencer = AutoPipeline.get_pipeline(
pipeline_name=pipeline_name,
model_args=model_args,
data_args=data_args,
pipeline_args=pipeline_args,
)
# Chats
model_name = model_args.model_name_or_path
if model_args.lora_model_path is not None:
model_name += f" + {model_args.lora_model_path}"
# context = (
# "You are a helpful assistant who follows the given instructions"
# " unconditionally."
# )
self.end_string = "\n\n"
def _get_llama_style_input(self):
history = [x["content"] for x in self.history]
context = "\n".join(history)
return context
def get_answer_at_once(self):
context = self._get_llama_style_input()
input_dataset = self.dataset.from_dict(
{"type": "text_only", "instances": [{"text": context}]}
)
output_dataset = self.inferencer.inference(
model=self.model,
dataset=input_dataset,
max_new_tokens=self.max_generation_token,
temperature=self.temperature,
)
response = output_dataset.to_dict()["instances"][0]["text"]
try:
index = response.index(self.end_string)
except ValueError:
response += self.end_string
index = response.index(self.end_string)
response = response[: index + 1]
return response, len(response)
def get_answer_stream_iter(self):
response, _ = self.get_answer_at_once()
yield response
class ModelManager:
def __init__(self, **kwargs) -> None:
self.get_model(**kwargs)
def get_model(
self,
model_name,
lora_model_path=None,
access_key=None,
temperature=None,
top_p=None,
system_prompt=None,
) -> BaseLLMModel:
print(lora_model_path)
msg = f"模型设置为了: {model_name}"
logging.info(msg)
model_type = ModelType.get_type(model_name)
lora_selector_visibility = False
lora_choices = []
dont_change_lora_selector = False
if model_type != ModelType.OpenAI:
config.local_embedding = True
model = None
try:
if model_type == ModelType.OpenAI:
model = OpenAIClient(
model_name=model_name,
api_key=access_key,
system_prompt=system_prompt,
temperature=temperature,
top_p=top_p,
)
elif model_type == ModelType.ChatGLM:
model = ChatGLM_Client(model_name)
elif model_type == ModelType.LLaMA and lora_model_path == "":
msg = "现在请选择LoRA模型"
logging.info(msg)
lora_selector_visibility = True
if os.path.isdir("lora"):
lora_choices = get_file_names("lora", plain=True, filetypes=[""])
lora_choices = ["No LoRA"] + lora_choices
elif model_type == ModelType.LLaMA and lora_model_path != "":
dont_change_lora_selector = True
if lora_model_path == "No LoRA":
lora_model_path = None
msg += " + No LoRA"
else:
msg += f" + {lora_model_path}"
model = LLaMA_Client(model_name, lora_model_path)
pass
elif model_type == ModelType.Unknown:
raise ValueError(f"未知模型: {model_name}")
except Exception as e:
logging.error(e)
msg = f"{STANDARD_ERROR_MSG}: {e}"
if model is not None:
self.model = model
if dont_change_lora_selector:
return msg
else:
return msg, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)
def predict(self, *args):
iter = self.model.predict(*args)
for i in iter:
yield i
def billing_info(self):
return self.model.billing_info()
def set_key(self, *args):
return self.model.set_key(*args)
def load_chat_history(self, *args):
return self.model.load_chat_history(*args)
def interrupt(self, *args):
return self.model.interrupt(*args)
def reset(self, *args):
return self.model.reset(*args)
def retry(self, *args):
iter = self.model.retry(*args)
for i in iter:
yield i
def delete_first_conversation(self, *args):
return self.model.delete_first_conversation(*args)
def delete_last_conversation(self, *args):
return self.model.delete_last_conversation(*args)
def set_system_prompt(self, *args):
return self.model.set_system_prompt(*args)
def save_chat_history(self, *args):
return self.model.save_chat_history(*args)
def export_markdown(self, *args):
return self.model.export_markdown(*args)
def load_chat_history(self, *args):
return self.model.load_chat_history(*args)
def set_token_upper_limit(self, *args):
return self.model.set_token_upper_limit(*args)
def set_temperature(self, *args):
self.model.set_temperature(*args)
def set_top_p(self, *args):
self.model.set_top_p(*args)
def set_n_choices(self, *args):
self.model.set_n_choices(*args)
def set_stop_sequence(self, *args):
self.model.set_stop_sequence(*args)
def set_max_tokens(self, *args):
self.model.set_max_tokens(*args)
def set_presence_penalty(self, *args):
self.model.set_presence_penalty(*args)
def set_frequency_penalty(self, *args):
self.model.set_frequency_penalty(*args)
def set_logit_bias(self, *args):
self.model.set_logit_bias(*args)
def set_user_identifier(self, *args):
self.model.set_user_identifier(*args)
if __name__ == "__main__":
with open("config.json", "r") as f:
openai_api_key = cjson.load(f)["openai_api_key"]
# set logging level to debug
logging.basicConfig(level=logging.DEBUG)
# client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
client = ModelManager(model_name="chatglm-6b-int4")
chatbot = []
stream = False
# 测试账单功能
logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
logging.info(client.billing_info())
# 测试问答
logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
question = "巴黎是中国的首都吗?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试问答后history : {client.history}")
# 测试记忆力
logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
question = "我刚刚问了你什么问题?"
for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"测试记忆力后history : {client.history}")
# 测试重试功能
logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
for i in client.retry(chatbot=chatbot, stream=stream):
logging.info(i)
logging.info(f"重试后history : {client.history}")
# # 测试总结功能
# print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
# chatbot, msg = client.reduce_token_size(chatbot=chatbot)
# print(chatbot, msg)
# print(f"总结后history: {client.history}")