Tuchuanhuhuhu commited on
Commit
c26dfd8
1 Parent(s): d4bd3ba

修复gitignore导致的文件缺失

Browse files
.gitignore CHANGED
@@ -140,7 +140,7 @@ dmypy.json
140
  api_key.txt
141
  config.json
142
  auth.json
143
- models/
144
  lora/
145
  .idea
146
  templates/*
 
140
  api_key.txt
141
  config.json
142
  auth.json
143
+ .models/
144
  lora/
145
  .idea
146
  templates/*
modules/models/StableLM.py ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList
3
+ import time
4
+ import numpy as np
5
+ from torch.nn import functional as F
6
+ import os
7
+ from base_model import BaseLLMModel
8
+
9
+ class StopOnTokens(StoppingCriteria):
10
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
11
+ stop_ids = [50278, 50279, 50277, 1, 0]
12
+ for stop_id in stop_ids:
13
+ if input_ids[0][-1] == stop_id:
14
+ return True
15
+ return False
16
+
17
+ class StableLM_Client(BaseLLMModel):
18
+ def __init__(self, model_name) -> None:
19
+ super().__init__(model_name=model_name)
20
+ print(f"Starting to load StableLM to memory")
21
+ self.model = AutoModelForCausalLM.from_pretrained(
22
+ "stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda()
23
+ self.tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b")
24
+ self.generator = pipeline('text-generation', model=self.model, tokenizer=self.tokenizer, device=0)
25
+ print(f"Sucessfully loaded StableLM to the memory")
26
+ self.system_prompt = """StableAssistant
27
+ - StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
28
+ - StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
29
+ - StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
30
+ - StableAssistant will refuse to participate in anything that could harm a human."""
31
+
32
+ def user(self, user_message, history):
33
+ history = history + [[user_message, ""]]
34
+ return "", history, history
35
+
36
+
37
+ def bot(self, history, curr_system_message):
38
+ messages = f"<|SYSTEM|># {self.system_prompt}" + \
39
+ "".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]])
40
+ for item in history])
41
+ output = self.generate(messages)
42
+ history[-1][1] = output
43
+ time.sleep(1)
44
+ return history, history
45
+
46
+ def _get_stablelm_style_input(self):
47
+ messages = self.system_prompt + \
48
+ "".join(["".join(["<|USER|>"+self.history[i]["content"], "<|ASSISTANT|>"+self.history[i + 1]["content"]])
49
+ for i in range(0, len(self.history), 2)])
50
+ return messages
51
+
52
+ def generate(self, text, bad_text=None):
53
+ stop = StopOnTokens()
54
+ result = self.generator(text, max_new_tokens=1024, num_return_sequences=1, num_beams=1, do_sample=True,
55
+ temperature=1.0, top_p=0.95, top_k=1000, stopping_criteria=StoppingCriteriaList([stop]))
56
+ return result[0]["generated_text"].replace(text, "")
57
+
58
+ def contrastive_generate(self, text, bad_text):
59
+ with torch.no_grad():
60
+ tokens = self.tokenizer(text, return_tensors="pt")[
61
+ 'input_ids'].cuda()[:, :4096-1024]
62
+ bad_tokens = self.tokenizer(bad_text, return_tensors="pt")[
63
+ 'input_ids'].cuda()[:, :4096-1024]
64
+ history = None
65
+ bad_history = None
66
+ curr_output = list()
67
+ for i in range(1024):
68
+ out = self.model(tokens, past_key_values=history, use_cache=True)
69
+ logits = out.logits
70
+ history = out.past_key_values
71
+ bad_out = self.model(bad_tokens, past_key_values=bad_history,
72
+ use_cache=True)
73
+ bad_logits = bad_out.logits
74
+ bad_history = bad_out.past_key_values
75
+ probs = F.softmax(logits.float(), dim=-1)[0][-1].cpu()
76
+ bad_probs = F.softmax(bad_logits.float(), dim=-1)[0][-1].cpu()
77
+ logits = torch.log(probs)
78
+ bad_logits = torch.log(bad_probs)
79
+ logits[probs > 0.1] = logits[probs > 0.1] - bad_logits[probs > 0.1]
80
+ probs = F.softmax(logits)
81
+ out = int(torch.multinomial(probs, 1))
82
+ if out in [50278, 50279, 50277, 1, 0]:
83
+ break
84
+ else:
85
+ curr_output.append(out)
86
+ out = np.array([out])
87
+ tokens = torch.from_numpy(np.array([out])).to(
88
+ tokens.device)
89
+ bad_tokens = torch.from_numpy(np.array([out])).to(
90
+ tokens.device)
91
+ return self.tokenizer.decode(curr_output)
92
+
93
+ def get_answer_at_once(self):
94
+ messages = self._get_stablelm_style_input()
95
+ return self.generate(messages)
modules/models/base_model.py ADDED
@@ -0,0 +1,561 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import TYPE_CHECKING, List
3
+
4
+ import logging
5
+ import json
6
+ import commentjson as cjson
7
+ import os
8
+ import sys
9
+ import requests
10
+ import urllib3
11
+ import traceback
12
+
13
+ from tqdm import tqdm
14
+ import colorama
15
+ from duckduckgo_search import ddg
16
+ import asyncio
17
+ import aiohttp
18
+ from enum import Enum
19
+
20
+ from ..presets import *
21
+ from ..llama_func import *
22
+ from ..utils import *
23
+ from .. import shared
24
+ from ..config import retrieve_proxy
25
+
26
+
27
+ class ModelType(Enum):
28
+ Unknown = -1
29
+ OpenAI = 0
30
+ ChatGLM = 1
31
+ LLaMA = 2
32
+ XMChat = 3
33
+
34
+ @classmethod
35
+ def get_type(cls, model_name: str):
36
+ model_type = None
37
+ model_name_lower = model_name.lower()
38
+ if "gpt" in model_name_lower:
39
+ model_type = ModelType.OpenAI
40
+ elif "chatglm" in model_name_lower:
41
+ model_type = ModelType.ChatGLM
42
+ elif "llama" in model_name_lower or "alpaca" in model_name_lower:
43
+ model_type = ModelType.LLaMA
44
+ elif "xmchat" in model_name_lower:
45
+ model_type = ModelType.XMChat
46
+ else:
47
+ model_type = ModelType.Unknown
48
+ return model_type
49
+
50
+
51
+ class BaseLLMModel:
52
+ def __init__(
53
+ self,
54
+ model_name,
55
+ system_prompt="",
56
+ temperature=1.0,
57
+ top_p=1.0,
58
+ n_choices=1,
59
+ stop=None,
60
+ max_generation_token=None,
61
+ presence_penalty=0,
62
+ frequency_penalty=0,
63
+ logit_bias=None,
64
+ user="",
65
+ ) -> None:
66
+ self.history = []
67
+ self.all_token_counts = []
68
+ self.model_name = model_name
69
+ self.model_type = ModelType.get_type(model_name)
70
+ try:
71
+ self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name]
72
+ except KeyError:
73
+ self.token_upper_limit = DEFAULT_TOKEN_LIMIT
74
+ self.interrupted = False
75
+ self.system_prompt = system_prompt
76
+ self.api_key = None
77
+ self.need_api_key = False
78
+ self.single_turn = False
79
+
80
+ self.temperature = temperature
81
+ self.top_p = top_p
82
+ self.n_choices = n_choices
83
+ self.stop_sequence = stop
84
+ self.max_generation_token = None
85
+ self.presence_penalty = presence_penalty
86
+ self.frequency_penalty = frequency_penalty
87
+ self.logit_bias = logit_bias
88
+ self.user_identifier = user
89
+
90
+ def get_answer_stream_iter(self):
91
+ """stream predict, need to be implemented
92
+ conversations are stored in self.history, with the most recent question, in OpenAI format
93
+ should return a generator, each time give the next word (str) in the answer
94
+ """
95
+ logging.warning("stream predict not implemented, using at once predict instead")
96
+ response, _ = self.get_answer_at_once()
97
+ yield response
98
+
99
+ def get_answer_at_once(self):
100
+ """predict at once, need to be implemented
101
+ conversations are stored in self.history, with the most recent question, in OpenAI format
102
+ Should return:
103
+ the answer (str)
104
+ total token count (int)
105
+ """
106
+ logging.warning("at once predict not implemented, using stream predict instead")
107
+ response_iter = self.get_answer_stream_iter()
108
+ count = 0
109
+ for response in response_iter:
110
+ count += 1
111
+ return response, sum(self.all_token_counts) + count
112
+
113
+ def billing_info(self):
114
+ """get billing infomation, inplement if needed"""
115
+ logging.warning("billing info not implemented, using default")
116
+ return BILLING_NOT_APPLICABLE_MSG
117
+
118
+ def count_token(self, user_input):
119
+ """get token count from input, implement if needed"""
120
+ logging.warning("token count not implemented, using default")
121
+ return len(user_input)
122
+
123
+ def stream_next_chatbot(self, inputs, chatbot, fake_input=None, display_append=""):
124
+ def get_return_value():
125
+ return chatbot, status_text
126
+
127
+ status_text = i18n("开始实时传输回答……")
128
+ if fake_input:
129
+ chatbot.append((fake_input, ""))
130
+ else:
131
+ chatbot.append((inputs, ""))
132
+
133
+ user_token_count = self.count_token(inputs)
134
+ self.all_token_counts.append(user_token_count)
135
+ logging.debug(f"输入token计数: {user_token_count}")
136
+
137
+ stream_iter = self.get_answer_stream_iter()
138
+
139
+ for partial_text in stream_iter:
140
+ chatbot[-1] = (chatbot[-1][0], partial_text + display_append)
141
+ self.all_token_counts[-1] += 1
142
+ status_text = self.token_message()
143
+ yield get_return_value()
144
+ if self.interrupted:
145
+ self.recover()
146
+ break
147
+ self.history.append(construct_assistant(partial_text))
148
+
149
+ def next_chatbot_at_once(self, inputs, chatbot, fake_input=None, display_append=""):
150
+ if fake_input:
151
+ chatbot.append((fake_input, ""))
152
+ else:
153
+ chatbot.append((inputs, ""))
154
+ if fake_input is not None:
155
+ user_token_count = self.count_token(fake_input)
156
+ else:
157
+ user_token_count = self.count_token(inputs)
158
+ self.all_token_counts.append(user_token_count)
159
+ ai_reply, total_token_count = self.get_answer_at_once()
160
+ self.history.append(construct_assistant(ai_reply))
161
+ if fake_input is not None:
162
+ self.history[-2] = construct_user(fake_input)
163
+ chatbot[-1] = (chatbot[-1][0], ai_reply + display_append)
164
+ if fake_input is not None:
165
+ self.all_token_counts[-1] += count_token(construct_assistant(ai_reply))
166
+ else:
167
+ self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts)
168
+ status_text = self.token_message()
169
+ return chatbot, status_text
170
+
171
+ def handle_file_upload(self, files, chatbot):
172
+ """if the model accepts multi modal input, implement this function"""
173
+ status = gr.Markdown.update()
174
+ if files:
175
+ construct_index(self.api_key, file_src=files)
176
+ status = "索引构建完成"
177
+ return gr.Files.update(), chatbot, status
178
+
179
+ def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
180
+ fake_inputs = None
181
+ display_append = []
182
+ limited_context = False
183
+ fake_inputs = real_inputs
184
+ if files:
185
+ from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery
186
+ from llama_index.indices.query.schema import QueryBundle
187
+ from langchain.embeddings.huggingface import HuggingFaceEmbeddings
188
+ from langchain.chat_models import ChatOpenAI
189
+ from llama_index import (
190
+ GPTSimpleVectorIndex,
191
+ ServiceContext,
192
+ LangchainEmbedding,
193
+ OpenAIEmbedding,
194
+ )
195
+ limited_context = True
196
+ msg = "加载索引中……"
197
+ logging.info(msg)
198
+ # yield chatbot + [(inputs, "")], msg
199
+ index = construct_index(self.api_key, file_src=files)
200
+ assert index is not None, "获取索引失败"
201
+ msg = "索引获取成功,生成回答中……"
202
+ logging.info(msg)
203
+ if local_embedding or self.model_type != ModelType.OpenAI:
204
+ embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2"))
205
+ else:
206
+ embed_model = OpenAIEmbedding()
207
+ # yield chatbot + [(inputs, "")], msg
208
+ with retrieve_proxy():
209
+ prompt_helper = PromptHelper(
210
+ max_input_size=4096,
211
+ num_output=5,
212
+ max_chunk_overlap=20,
213
+ chunk_size_limit=600,
214
+ )
215
+ from llama_index import ServiceContext
216
+
217
+ service_context = ServiceContext.from_defaults(
218
+ prompt_helper=prompt_helper, embed_model=embed_model
219
+ )
220
+ query_object = GPTVectorStoreIndexQuery(
221
+ index.index_struct,
222
+ service_context=service_context,
223
+ similarity_top_k=5,
224
+ vector_store=index._vector_store,
225
+ docstore=index._docstore,
226
+ )
227
+ query_bundle = QueryBundle(real_inputs)
228
+ nodes = query_object.retrieve(query_bundle)
229
+ reference_results = [n.node.text for n in nodes]
230
+ reference_results = add_source_numbers(reference_results, use_source=False)
231
+ display_append = add_details(reference_results)
232
+ display_append = "\n\n" + "".join(display_append)
233
+ real_inputs = (
234
+ replace_today(PROMPT_TEMPLATE)
235
+ .replace("{query_str}", real_inputs)
236
+ .replace("{context_str}", "\n\n".join(reference_results))
237
+ .replace("{reply_language}", reply_language)
238
+ )
239
+ elif use_websearch:
240
+ limited_context = True
241
+ search_results = ddg(real_inputs, max_results=5)
242
+ reference_results = []
243
+ for idx, result in enumerate(search_results):
244
+ logging.debug(f"搜索结果{idx + 1}:{result}")
245
+ domain_name = urllib3.util.parse_url(result["href"]).host
246
+ reference_results.append([result["body"], result["href"]])
247
+ display_append.append(
248
+ # f"{idx+1}. [{domain_name}]({result['href']})\n"
249
+ f"<li><a href=\"{result['href']}\" target=\"_blank\">{domain_name}</a></li>\n"
250
+ )
251
+ reference_results = add_source_numbers(reference_results)
252
+ display_append = "<ol>\n\n" + "".join(display_append) + "</ol>"
253
+ real_inputs = (
254
+ replace_today(WEBSEARCH_PTOMPT_TEMPLATE)
255
+ .replace("{query}", real_inputs)
256
+ .replace("{web_results}", "\n\n".join(reference_results))
257
+ .replace("{reply_language}", reply_language)
258
+ )
259
+ else:
260
+ display_append = ""
261
+ return limited_context, fake_inputs, display_append, real_inputs, chatbot
262
+
263
+ def predict(
264
+ self,
265
+ inputs,
266
+ chatbot,
267
+ stream=False,
268
+ use_websearch=False,
269
+ files=None,
270
+ reply_language="中文",
271
+ should_check_token_count=True,
272
+ ): # repetition_penalty, top_k
273
+
274
+ status_text = "开始生成回答……"
275
+ logging.info(
276
+ "输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL
277
+ )
278
+ if should_check_token_count:
279
+ yield chatbot + [(inputs, "")], status_text
280
+ if reply_language == "跟随问题语言(不稳定)":
281
+ reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch."
282
+
283
+ limited_context, fake_inputs, display_append, inputs, chatbot = self.prepare_inputs(real_inputs=inputs, use_websearch=use_websearch, files=files, reply_language=reply_language, chatbot=chatbot)
284
+ yield chatbot + [(fake_inputs, "")], status_text
285
+
286
+ if (
287
+ self.need_api_key and
288
+ self.api_key is None
289
+ and not shared.state.multi_api_key
290
+ ):
291
+ status_text = STANDARD_ERROR_MSG + NO_APIKEY_MSG
292
+ logging.info(status_text)
293
+ chatbot.append((inputs, ""))
294
+ if len(self.history) == 0:
295
+ self.history.append(construct_user(inputs))
296
+ self.history.append("")
297
+ self.all_token_counts.append(0)
298
+ else:
299
+ self.history[-2] = construct_user(inputs)
300
+ yield chatbot + [(inputs, "")], status_text
301
+ return
302
+ elif len(inputs.strip()) == 0:
303
+ status_text = STANDARD_ERROR_MSG + NO_INPUT_MSG
304
+ logging.info(status_text)
305
+ yield chatbot + [(inputs, "")], status_text
306
+ return
307
+
308
+ if self.single_turn:
309
+ self.history = []
310
+ self.all_token_counts = []
311
+ self.history.append(construct_user(inputs))
312
+
313
+ try:
314
+ if stream:
315
+ logging.debug("使用流式传输")
316
+ iter = self.stream_next_chatbot(
317
+ inputs,
318
+ chatbot,
319
+ fake_input=fake_inputs,
320
+ display_append=display_append,
321
+ )
322
+ for chatbot, status_text in iter:
323
+ yield chatbot, status_text
324
+ else:
325
+ logging.debug("不使用流式传输")
326
+ chatbot, status_text = self.next_chatbot_at_once(
327
+ inputs,
328
+ chatbot,
329
+ fake_input=fake_inputs,
330
+ display_append=display_append,
331
+ )
332
+ yield chatbot, status_text
333
+ except Exception as e:
334
+ traceback.print_exc()
335
+ status_text = STANDARD_ERROR_MSG + str(e)
336
+ yield chatbot, status_text
337
+
338
+ if len(self.history) > 1 and self.history[-1]["content"] != inputs:
339
+ logging.info(
340
+ "回答为:"
341
+ + colorama.Fore.BLUE
342
+ + f"{self.history[-1]['content']}"
343
+ + colorama.Style.RESET_ALL
344
+ )
345
+
346
+ if limited_context:
347
+ # self.history = self.history[-4:]
348
+ # self.all_token_counts = self.all_token_counts[-2:]
349
+ self.history = []
350
+ self.all_token_counts = []
351
+
352
+ max_token = self.token_upper_limit - TOKEN_OFFSET
353
+
354
+ if sum(self.all_token_counts) > max_token and should_check_token_count:
355
+ count = 0
356
+ while (
357
+ sum(self.all_token_counts)
358
+ > self.token_upper_limit * REDUCE_TOKEN_FACTOR
359
+ and sum(self.all_token_counts) > 0
360
+ ):
361
+ count += 1
362
+ del self.all_token_counts[0]
363
+ del self.history[:2]
364
+ logging.info(status_text)
365
+ status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话"
366
+ yield chatbot, status_text
367
+
368
+ def retry(
369
+ self,
370
+ chatbot,
371
+ stream=False,
372
+ use_websearch=False,
373
+ files=None,
374
+ reply_language="中文",
375
+ ):
376
+ logging.debug("重试中……")
377
+ if len(self.history) > 0:
378
+ inputs = self.history[-2]["content"]
379
+ del self.history[-2:]
380
+ self.all_token_counts.pop()
381
+ elif len(chatbot) > 0:
382
+ inputs = chatbot[-1][0]
383
+ else:
384
+ yield chatbot, f"{STANDARD_ERROR_MSG}上下文是空的"
385
+ return
386
+
387
+ iter = self.predict(
388
+ inputs,
389
+ chatbot,
390
+ stream=stream,
391
+ use_websearch=use_websearch,
392
+ files=files,
393
+ reply_language=reply_language,
394
+ )
395
+ for x in iter:
396
+ yield x
397
+ logging.debug("重试完毕")
398
+
399
+ # def reduce_token_size(self, chatbot):
400
+ # logging.info("开始减少token数量……")
401
+ # chatbot, status_text = self.next_chatbot_at_once(
402
+ # summarize_prompt,
403
+ # chatbot
404
+ # )
405
+ # max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR
406
+ # num_chat = find_n(self.all_token_counts, max_token_count)
407
+ # logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats")
408
+ # chatbot = chatbot[:-1]
409
+ # self.history = self.history[-2*num_chat:] if num_chat > 0 else []
410
+ # self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else []
411
+ # msg = f"保留了最近{num_chat}轮对话"
412
+ # logging.info(msg)
413
+ # logging.info("减少token数量完毕")
414
+ # return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0])
415
+
416
+ def interrupt(self):
417
+ self.interrupted = True
418
+
419
+ def recover(self):
420
+ self.interrupted = False
421
+
422
+ def set_token_upper_limit(self, new_upper_limit):
423
+ self.token_upper_limit = new_upper_limit
424
+ print(f"token上限设置为{new_upper_limit}")
425
+
426
+ def set_temperature(self, new_temperature):
427
+ self.temperature = new_temperature
428
+
429
+ def set_top_p(self, new_top_p):
430
+ self.top_p = new_top_p
431
+
432
+ def set_n_choices(self, new_n_choices):
433
+ self.n_choices = new_n_choices
434
+
435
+ def set_stop_sequence(self, new_stop_sequence: str):
436
+ new_stop_sequence = new_stop_sequence.split(",")
437
+ self.stop_sequence = new_stop_sequence
438
+
439
+ def set_max_tokens(self, new_max_tokens):
440
+ self.max_generation_token = new_max_tokens
441
+
442
+ def set_presence_penalty(self, new_presence_penalty):
443
+ self.presence_penalty = new_presence_penalty
444
+
445
+ def set_frequency_penalty(self, new_frequency_penalty):
446
+ self.frequency_penalty = new_frequency_penalty
447
+
448
+ def set_logit_bias(self, logit_bias):
449
+ logit_bias = logit_bias.split()
450
+ bias_map = {}
451
+ encoding = tiktoken.get_encoding("cl100k_base")
452
+ for line in logit_bias:
453
+ word, bias_amount = line.split(":")
454
+ if word:
455
+ for token in encoding.encode(word):
456
+ bias_map[token] = float(bias_amount)
457
+ self.logit_bias = bias_map
458
+
459
+ def set_user_identifier(self, new_user_identifier):
460
+ self.user_identifier = new_user_identifier
461
+
462
+ def set_system_prompt(self, new_system_prompt):
463
+ self.system_prompt = new_system_prompt
464
+
465
+ def set_key(self, new_access_key):
466
+ self.api_key = new_access_key.strip()
467
+ msg = i18n("API密钥更改为了") + hide_middle_chars(self.api_key)
468
+ logging.info(msg)
469
+ return self.api_key, msg
470
+
471
+ def set_single_turn(self, new_single_turn):
472
+ self.single_turn = new_single_turn
473
+
474
+ def reset(self):
475
+ self.history = []
476
+ self.all_token_counts = []
477
+ self.interrupted = False
478
+ return [], self.token_message([0])
479
+
480
+ def delete_first_conversation(self):
481
+ if self.history:
482
+ del self.history[:2]
483
+ del self.all_token_counts[0]
484
+ return self.token_message()
485
+
486
+ def delete_last_conversation(self, chatbot):
487
+ if len(chatbot) > 0 and STANDARD_ERROR_MSG in chatbot[-1][1]:
488
+ msg = "由于包含报错信息,只删除chatbot记录"
489
+ chatbot.pop()
490
+ return chatbot, self.history
491
+ if len(self.history) > 0:
492
+ self.history.pop()
493
+ self.history.pop()
494
+ if len(chatbot) > 0:
495
+ msg = "删除了一组chatbot对话"
496
+ chatbot.pop()
497
+ if len(self.all_token_counts) > 0:
498
+ msg = "删除了一组对话的token计数记录"
499
+ self.all_token_counts.pop()
500
+ msg = "删除了一组对话"
501
+ return chatbot, msg
502
+
503
+ def token_message(self, token_lst=None):
504
+ if token_lst is None:
505
+ token_lst = self.all_token_counts
506
+ token_sum = 0
507
+ for i in range(len(token_lst)):
508
+ token_sum += sum(token_lst[: i + 1])
509
+ return i18n("Token 计数: ") + f"{sum(token_lst)}" + i18n(",本次对话累计消耗了 ") + f"{token_sum} tokens"
510
+
511
+ def save_chat_history(self, filename, chatbot, user_name):
512
+ if filename == "":
513
+ return
514
+ if not filename.endswith(".json"):
515
+ filename += ".json"
516
+ return save_file(filename, self.system_prompt, self.history, chatbot, user_name)
517
+
518
+ def export_markdown(self, filename, chatbot, user_name):
519
+ if filename == "":
520
+ return
521
+ if not filename.endswith(".md"):
522
+ filename += ".md"
523
+ return save_file(filename, self.system_prompt, self.history, chatbot, user_name)
524
+
525
+ def load_chat_history(self, filename, chatbot, user_name):
526
+ logging.debug(f"{user_name} 加载对话历史中……")
527
+ if type(filename) != str:
528
+ filename = filename.name
529
+ try:
530
+ with open(os.path.join(HISTORY_DIR, user_name, filename), "r") as f:
531
+ json_s = json.load(f)
532
+ try:
533
+ if type(json_s["history"][0]) == str:
534
+ logging.info("历史记录格式为旧版,正在转换……")
535
+ new_history = []
536
+ for index, item in enumerate(json_s["history"]):
537
+ if index % 2 == 0:
538
+ new_history.append(construct_user(item))
539
+ else:
540
+ new_history.append(construct_assistant(item))
541
+ json_s["history"] = new_history
542
+ logging.info(new_history)
543
+ except:
544
+ # 没有对话历史
545
+ pass
546
+ logging.debug(f"{user_name} 加载对话历史完毕")
547
+ self.history = json_s["history"]
548
+ return filename, json_s["system"], json_s["chatbot"]
549
+ except FileNotFoundError:
550
+ logging.warning(f"{user_name} 没有找到对话历史文件,不执行任何操作")
551
+ return filename, self.system_prompt, chatbot
552
+
553
+ def like(self):
554
+ """like the last response, implement if needed
555
+ """
556
+ return gr.update()
557
+
558
+ def dislike(self):
559
+ """dislike the last response, implement if needed
560
+ """
561
+ return gr.update()
modules/models/models.py ADDED
@@ -0,0 +1,625 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+ from typing import TYPE_CHECKING, List
3
+
4
+ import logging
5
+ import json
6
+ import commentjson as cjson
7
+ import os
8
+ import sys
9
+ import requests
10
+ import urllib3
11
+ import platform
12
+ import base64
13
+ from io import BytesIO
14
+ from PIL import Image
15
+
16
+ from tqdm import tqdm
17
+ import colorama
18
+ from duckduckgo_search import ddg
19
+ import asyncio
20
+ import aiohttp
21
+ from enum import Enum
22
+ import uuid
23
+
24
+ from ..presets import *
25
+ from ..llama_func import *
26
+ from ..utils import *
27
+ from .. import shared
28
+ from ..config import retrieve_proxy
29
+ from modules import config
30
+ from .base_model import BaseLLMModel, ModelType
31
+
32
+
33
+ class OpenAIClient(BaseLLMModel):
34
+ def __init__(
35
+ self,
36
+ model_name,
37
+ api_key,
38
+ system_prompt=INITIAL_SYSTEM_PROMPT,
39
+ temperature=1.0,
40
+ top_p=1.0,
41
+ ) -> None:
42
+ super().__init__(
43
+ model_name=model_name,
44
+ temperature=temperature,
45
+ top_p=top_p,
46
+ system_prompt=system_prompt,
47
+ )
48
+ self.api_key = api_key
49
+ self.need_api_key = True
50
+ self._refresh_header()
51
+
52
+ def get_answer_stream_iter(self):
53
+ response = self._get_response(stream=True)
54
+ if response is not None:
55
+ iter = self._decode_chat_response(response)
56
+ partial_text = ""
57
+ for i in iter:
58
+ partial_text += i
59
+ yield partial_text
60
+ else:
61
+ yield STANDARD_ERROR_MSG + GENERAL_ERROR_MSG
62
+
63
+ def get_answer_at_once(self):
64
+ response = self._get_response()
65
+ response = json.loads(response.text)
66
+ content = response["choices"][0]["message"]["content"]
67
+ total_token_count = response["usage"]["total_tokens"]
68
+ return content, total_token_count
69
+
70
+ def count_token(self, user_input):
71
+ input_token_count = count_token(construct_user(user_input))
72
+ if self.system_prompt is not None and len(self.all_token_counts) == 0:
73
+ system_prompt_token_count = count_token(
74
+ construct_system(self.system_prompt)
75
+ )
76
+ return input_token_count + system_prompt_token_count
77
+ return input_token_count
78
+
79
+ def billing_info(self):
80
+ try:
81
+ curr_time = datetime.datetime.now()
82
+ last_day_of_month = get_last_day_of_month(
83
+ curr_time).strftime("%Y-%m-%d")
84
+ first_day_of_month = curr_time.replace(day=1).strftime("%Y-%m-%d")
85
+ usage_url = f"{shared.state.usage_api_url}?start_date={first_day_of_month}&end_date={last_day_of_month}"
86
+ try:
87
+ usage_data = self._get_billing_data(usage_url)
88
+ except Exception as e:
89
+ logging.error(f"获取API使用情况失败:" + str(e))
90
+ return i18n("**获取API使用情况失败**")
91
+ rounded_usage = "{:.5f}".format(usage_data["total_usage"] / 100)
92
+ return i18n("**本月使用金额** ") + f"\u3000 ${rounded_usage}"
93
+ except requests.exceptions.ConnectTimeout:
94
+ status_text = (
95
+ STANDARD_ERROR_MSG + CONNECTION_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
96
+ )
97
+ return status_text
98
+ except requests.exceptions.ReadTimeout:
99
+ status_text = STANDARD_ERROR_MSG + READ_TIMEOUT_MSG + ERROR_RETRIEVE_MSG
100
+ return status_text
101
+ except Exception as e:
102
+ import traceback
103
+ traceback.print_exc()
104
+ logging.error(i18n("获取API使用情况失败:") + str(e))
105
+ return STANDARD_ERROR_MSG + ERROR_RETRIEVE_MSG
106
+
107
+ def set_token_upper_limit(self, new_upper_limit):
108
+ pass
109
+
110
+ @shared.state.switching_api_key # 在不开启多账号模式的时候,这个装饰器不会起作用
111
+ def _get_response(self, stream=False):
112
+ openai_api_key = self.api_key
113
+ system_prompt = self.system_prompt
114
+ history = self.history
115
+ logging.debug(colorama.Fore.YELLOW +
116
+ f"{history}" + colorama.Fore.RESET)
117
+ headers = {
118
+ "Content-Type": "application/json",
119
+ "Authorization": f"Bearer {openai_api_key}",
120
+ }
121
+
122
+ if system_prompt is not None:
123
+ history = [construct_system(system_prompt), *history]
124
+
125
+ payload = {
126
+ "model": self.model_name,
127
+ "messages": history,
128
+ "temperature": self.temperature,
129
+ "top_p": self.top_p,
130
+ "n": self.n_choices,
131
+ "stream": stream,
132
+ "presence_penalty": self.presence_penalty,
133
+ "frequency_penalty": self.frequency_penalty,
134
+ }
135
+
136
+ if self.max_generation_token is not None:
137
+ payload["max_tokens"] = self.max_generation_token
138
+ if self.stop_sequence is not None:
139
+ payload["stop"] = self.stop_sequence
140
+ if self.logit_bias is not None:
141
+ payload["logit_bias"] = self.logit_bias
142
+ if self.user_identifier is not None:
143
+ payload["user"] = self.user_identifier
144
+
145
+ if stream:
146
+ timeout = TIMEOUT_STREAMING
147
+ else:
148
+ timeout = TIMEOUT_ALL
149
+
150
+ # 如果有自定义的api-host,使用自定义host发送请求,否则使用默认设置发送请求
151
+ if shared.state.completion_url != COMPLETION_URL:
152
+ logging.info(f"使用自定义API URL: {shared.state.completion_url}")
153
+
154
+ with retrieve_proxy():
155
+ try:
156
+ response = requests.post(
157
+ shared.state.completion_url,
158
+ headers=headers,
159
+ json=payload,
160
+ stream=stream,
161
+ timeout=timeout,
162
+ )
163
+ except:
164
+ return None
165
+ return response
166
+
167
+ def _refresh_header(self):
168
+ self.headers = {
169
+ "Content-Type": "application/json",
170
+ "Authorization": f"Bearer {self.api_key}",
171
+ }
172
+
173
+ def _get_billing_data(self, billing_url):
174
+ with retrieve_proxy():
175
+ response = requests.get(
176
+ billing_url,
177
+ headers=self.headers,
178
+ timeout=TIMEOUT_ALL,
179
+ )
180
+
181
+ if response.status_code == 200:
182
+ data = response.json()
183
+ return data
184
+ else:
185
+ raise Exception(
186
+ f"API request failed with status code {response.status_code}: {response.text}"
187
+ )
188
+
189
+ def _decode_chat_response(self, response):
190
+ error_msg = ""
191
+ for chunk in response.iter_lines():
192
+ if chunk:
193
+ chunk = chunk.decode()
194
+ chunk_length = len(chunk)
195
+ try:
196
+ chunk = json.loads(chunk[6:])
197
+ except json.JSONDecodeError:
198
+ print(i18n("JSON解析错误,收到的内容: ") + f"{chunk}")
199
+ error_msg += chunk
200
+ continue
201
+ if chunk_length > 6 and "delta" in chunk["choices"][0]:
202
+ if chunk["choices"][0]["finish_reason"] == "stop":
203
+ break
204
+ try:
205
+ yield chunk["choices"][0]["delta"]["content"]
206
+ except Exception as e:
207
+ # logging.error(f"Error: {e}")
208
+ continue
209
+ if error_msg:
210
+ raise Exception(error_msg)
211
+
212
+ def set_key(self, new_access_key):
213
+ ret = super().set_key(new_access_key)
214
+ self._refresh_header()
215
+ return ret
216
+
217
+
218
+ class ChatGLM_Client(BaseLLMModel):
219
+ def __init__(self, model_name) -> None:
220
+ super().__init__(model_name=model_name)
221
+ from transformers import AutoTokenizer, AutoModel
222
+ import torch
223
+ global CHATGLM_TOKENIZER, CHATGLM_MODEL
224
+ if CHATGLM_TOKENIZER is None or CHATGLM_MODEL is None:
225
+ system_name = platform.system()
226
+ model_path = None
227
+ if os.path.exists("models"):
228
+ model_dirs = os.listdir("models")
229
+ if model_name in model_dirs:
230
+ model_path = f"models/{model_name}"
231
+ if model_path is not None:
232
+ model_source = model_path
233
+ else:
234
+ model_source = f"THUDM/{model_name}"
235
+ CHATGLM_TOKENIZER = AutoTokenizer.from_pretrained(
236
+ model_source, trust_remote_code=True
237
+ )
238
+ quantified = False
239
+ if "int4" in model_name:
240
+ quantified = True
241
+ model = AutoModel.from_pretrained(
242
+ model_source, trust_remote_code=True
243
+ )
244
+ if torch.cuda.is_available():
245
+ # run on CUDA
246
+ logging.info("CUDA is available, using CUDA")
247
+ model = model.half().cuda()
248
+ # mps加速还存在一些问题,暂时不使用
249
+ elif system_name == "Darwin" and model_path is not None and not quantified:
250
+ logging.info("Running on macOS, using MPS")
251
+ # running on macOS and model already downloaded
252
+ model = model.half().to("mps")
253
+ else:
254
+ logging.info("GPU is not available, using CPU")
255
+ model = model.float()
256
+ model = model.eval()
257
+ CHATGLM_MODEL = model
258
+
259
+ def _get_glm_style_input(self):
260
+ history = [x["content"] for x in self.history]
261
+ query = history.pop()
262
+ logging.debug(colorama.Fore.YELLOW +
263
+ f"{history}" + colorama.Fore.RESET)
264
+ assert (
265
+ len(history) % 2 == 0
266
+ ), f"History should be even length. current history is: {history}"
267
+ history = [[history[i], history[i + 1]]
268
+ for i in range(0, len(history), 2)]
269
+ return history, query
270
+
271
+ def get_answer_at_once(self):
272
+ history, query = self._get_glm_style_input()
273
+ response, _ = CHATGLM_MODEL.chat(
274
+ CHATGLM_TOKENIZER, query, history=history)
275
+ return response, len(response)
276
+
277
+ def get_answer_stream_iter(self):
278
+ history, query = self._get_glm_style_input()
279
+ for response, history in CHATGLM_MODEL.stream_chat(
280
+ CHATGLM_TOKENIZER,
281
+ query,
282
+ history,
283
+ max_length=self.token_upper_limit,
284
+ top_p=self.top_p,
285
+ temperature=self.temperature,
286
+ ):
287
+ yield response
288
+
289
+
290
+ class LLaMA_Client(BaseLLMModel):
291
+ def __init__(
292
+ self,
293
+ model_name,
294
+ lora_path=None,
295
+ ) -> None:
296
+ super().__init__(model_name=model_name)
297
+ from lmflow.datasets.dataset import Dataset
298
+ from lmflow.pipeline.auto_pipeline import AutoPipeline
299
+ from lmflow.models.auto_model import AutoModel
300
+ from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
301
+
302
+ self.max_generation_token = 1000
303
+ self.end_string = "\n\n"
304
+ # We don't need input data
305
+ data_args = DatasetArguments(dataset_path=None)
306
+ self.dataset = Dataset(data_args)
307
+ self.system_prompt = ""
308
+
309
+ global LLAMA_MODEL, LLAMA_INFERENCER
310
+ if LLAMA_MODEL is None or LLAMA_INFERENCER is None:
311
+ model_path = None
312
+ if os.path.exists("models"):
313
+ model_dirs = os.listdir("models")
314
+ if model_name in model_dirs:
315
+ model_path = f"models/{model_name}"
316
+ if model_path is not None:
317
+ model_source = model_path
318
+ else:
319
+ model_source = f"decapoda-research/{model_name}"
320
+ # raise Exception(f"models目录下没有这个模型: {model_name}")
321
+ if lora_path is not None:
322
+ lora_path = f"lora/{lora_path}"
323
+ model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None,
324
+ use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
325
+ pipeline_args = InferencerArguments(
326
+ local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
327
+
328
+ with open(pipeline_args.deepspeed, "r") as f:
329
+ ds_config = json.load(f)
330
+ LLAMA_MODEL = AutoModel.get_model(
331
+ model_args,
332
+ tune_strategy="none",
333
+ ds_config=ds_config,
334
+ )
335
+ LLAMA_INFERENCER = AutoPipeline.get_pipeline(
336
+ pipeline_name="inferencer",
337
+ model_args=model_args,
338
+ data_args=data_args,
339
+ pipeline_args=pipeline_args,
340
+ )
341
+
342
+ def _get_llama_style_input(self):
343
+ history = []
344
+ instruction = ""
345
+ if self.system_prompt:
346
+ instruction = (f"Instruction: {self.system_prompt}\n")
347
+ for x in self.history:
348
+ if x["role"] == "user":
349
+ history.append(f"{instruction}Input: {x['content']}")
350
+ else:
351
+ history.append(f"Output: {x['content']}")
352
+ context = "\n\n".join(history)
353
+ context += "\n\nOutput: "
354
+ return context
355
+
356
+ def get_answer_at_once(self):
357
+ context = self._get_llama_style_input()
358
+
359
+ input_dataset = self.dataset.from_dict(
360
+ {"type": "text_only", "instances": [{"text": context}]}
361
+ )
362
+
363
+ output_dataset = LLAMA_INFERENCER.inference(
364
+ model=LLAMA_MODEL,
365
+ dataset=input_dataset,
366
+ max_new_tokens=self.max_generation_token,
367
+ temperature=self.temperature,
368
+ )
369
+
370
+ response = output_dataset.to_dict()["instances"][0]["text"]
371
+ return response, len(response)
372
+
373
+ def get_answer_stream_iter(self):
374
+ context = self._get_llama_style_input()
375
+ partial_text = ""
376
+ step = 1
377
+ for _ in range(0, self.max_generation_token, step):
378
+ input_dataset = self.dataset.from_dict(
379
+ {"type": "text_only", "instances": [
380
+ {"text": context + partial_text}]}
381
+ )
382
+ output_dataset = LLAMA_INFERENCER.inference(
383
+ model=LLAMA_MODEL,
384
+ dataset=input_dataset,
385
+ max_new_tokens=step,
386
+ temperature=self.temperature,
387
+ )
388
+ response = output_dataset.to_dict()["instances"][0]["text"]
389
+ if response == "" or response == self.end_string:
390
+ break
391
+ partial_text += response
392
+ yield partial_text
393
+
394
+
395
+ class XMChat(BaseLLMModel):
396
+ def __init__(self, api_key):
397
+ super().__init__(model_name="xmchat")
398
+ self.api_key = api_key
399
+ self.session_id = None
400
+ self.reset()
401
+ self.image_bytes = None
402
+ self.image_path = None
403
+ self.xm_history = []
404
+ self.url = "https://xmbot.net/web"
405
+ self.last_conv_id = None
406
+
407
+ def reset(self):
408
+ self.session_id = str(uuid.uuid4())
409
+ self.last_conv_id = None
410
+ return [], "已重置"
411
+
412
+ def image_to_base64(self, image_path):
413
+ # 打开并加载图片
414
+ img = Image.open(image_path)
415
+
416
+ # 获取图片的宽度和高度
417
+ width, height = img.size
418
+
419
+ # 计算压缩比例,以确保最长边小于4096像素
420
+ max_dimension = 2048
421
+ scale_ratio = min(max_dimension / width, max_dimension / height)
422
+
423
+ if scale_ratio < 1:
424
+ # 按压缩比例调整图片大小
425
+ new_width = int(width * scale_ratio)
426
+ new_height = int(height * scale_ratio)
427
+ img = img.resize((new_width, new_height), Image.ANTIALIAS)
428
+
429
+ # 将图片转换为jpg格式的二进制数据
430
+ buffer = BytesIO()
431
+ if img.mode == "RGBA":
432
+ img = img.convert("RGB")
433
+ img.save(buffer, format='JPEG')
434
+ binary_image = buffer.getvalue()
435
+
436
+ # 对二进制数据进行Base64编码
437
+ base64_image = base64.b64encode(binary_image).decode('utf-8')
438
+
439
+ return base64_image
440
+
441
+ def try_read_image(self, filepath):
442
+ def is_image_file(filepath):
443
+ # 判断文件是否为图片
444
+ valid_image_extensions = [".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"]
445
+ file_extension = os.path.splitext(filepath)[1].lower()
446
+ return file_extension in valid_image_extensions
447
+
448
+ if is_image_file(filepath):
449
+ logging.info(f"读取图片文件: {filepath}")
450
+ self.image_bytes = self.image_to_base64(filepath)
451
+ self.image_path = filepath
452
+ else:
453
+ self.image_bytes = None
454
+ self.image_path = None
455
+
456
+ def like(self):
457
+ if self.last_conv_id is None:
458
+ return "点赞失败,你还没发送过消息"
459
+ data = {
460
+ "uuid": self.last_conv_id,
461
+ "appraise": "good"
462
+ }
463
+ response = requests.post(self.url, json=data)
464
+ return "👍点赞成功,,感谢反馈~"
465
+
466
+ def dislike(self):
467
+ if self.last_conv_id is None:
468
+ return "点踩失败,你还没发送过消息"
469
+ data = {
470
+ "uuid": self.last_conv_id,
471
+ "appraise": "bad"
472
+ }
473
+ response = requests.post(self.url, json=data)
474
+ return "👎点踩成功,感谢反馈~"
475
+
476
+ def prepare_inputs(self, real_inputs, use_websearch, files, reply_language, chatbot):
477
+ fake_inputs = real_inputs
478
+ display_append = ""
479
+ limited_context = False
480
+ return limited_context, fake_inputs, display_append, real_inputs, chatbot
481
+
482
+ def handle_file_upload(self, files, chatbot):
483
+ """if the model accepts multi modal input, implement this function"""
484
+ if files:
485
+ for file in files:
486
+ if file.name:
487
+ logging.info(f"尝试读取图像: {file.name}")
488
+ self.try_read_image(file.name)
489
+ if self.image_path is not None:
490
+ chatbot = chatbot + [((self.image_path,), None)]
491
+ if self.image_bytes is not None:
492
+ logging.info("使用图片作为输入")
493
+ # XMChat的一轮对话中实际上只能处理一张图片
494
+ self.reset()
495
+ conv_id = str(uuid.uuid4())
496
+ data = {
497
+ "user_id": self.api_key,
498
+ "session_id": self.session_id,
499
+ "uuid": conv_id,
500
+ "data_type": "imgbase64",
501
+ "data": self.image_bytes
502
+ }
503
+ response = requests.post(self.url, json=data)
504
+ response = json.loads(response.text)
505
+ logging.info(f"图片回复: {response['data']}")
506
+ return None, chatbot, None
507
+
508
+ def get_answer_at_once(self):
509
+ question = self.history[-1]["content"]
510
+ conv_id = str(uuid.uuid4())
511
+ self.last_conv_id = conv_id
512
+ data = {
513
+ "user_id": self.api_key,
514
+ "session_id": self.session_id,
515
+ "uuid": conv_id,
516
+ "data_type": "text",
517
+ "data": question
518
+ }
519
+ response = requests.post(self.url, json=data)
520
+ try:
521
+ response = json.loads(response.text)
522
+ return response["data"], len(response["data"])
523
+ except Exception as e:
524
+ return response.text, len(response.text)
525
+
526
+
527
+
528
+
529
+ def get_model(
530
+ model_name,
531
+ lora_model_path=None,
532
+ access_key=None,
533
+ temperature=None,
534
+ top_p=None,
535
+ system_prompt=None,
536
+ ) -> BaseLLMModel:
537
+ msg = i18n("模型设置为了:") + f" {model_name}"
538
+ model_type = ModelType.get_type(model_name)
539
+ lora_selector_visibility = False
540
+ lora_choices = []
541
+ dont_change_lora_selector = False
542
+ if model_type != ModelType.OpenAI:
543
+ config.local_embedding = True
544
+ # del current_model.model
545
+ model = None
546
+ try:
547
+ if model_type == ModelType.OpenAI:
548
+ logging.info(f"正在加载OpenAI模型: {model_name}")
549
+ model = OpenAIClient(
550
+ model_name=model_name,
551
+ api_key=access_key,
552
+ system_prompt=system_prompt,
553
+ temperature=temperature,
554
+ top_p=top_p,
555
+ )
556
+ elif model_type == ModelType.ChatGLM:
557
+ logging.info(f"正在加载ChatGLM模型: {model_name}")
558
+ model = ChatGLM_Client(model_name)
559
+ elif model_type == ModelType.LLaMA and lora_model_path == "":
560
+ msg = f"现在请为 {model_name} 选择LoRA模型"
561
+ logging.info(msg)
562
+ lora_selector_visibility = True
563
+ if os.path.isdir("lora"):
564
+ lora_choices = get_file_names(
565
+ "lora", plain=True, filetypes=[""])
566
+ lora_choices = ["No LoRA"] + lora_choices
567
+ elif model_type == ModelType.LLaMA and lora_model_path != "":
568
+ logging.info(f"正在加载LLaMA模型: {model_name} + {lora_model_path}")
569
+ dont_change_lora_selector = True
570
+ if lora_model_path == "No LoRA":
571
+ lora_model_path = None
572
+ msg += " + No LoRA"
573
+ else:
574
+ msg += f" + {lora_model_path}"
575
+ model = LLaMA_Client(model_name, lora_model_path)
576
+ elif model_type == ModelType.XMChat:
577
+ if os.environ.get("XMCHAT_API_KEY") != "":
578
+ access_key = os.environ.get("XMCHAT_API_KEY")
579
+ model = XMChat(api_key=access_key)
580
+ elif model_type == ModelType.Unknown:
581
+ raise ValueError(f"未知模型: {model_name}")
582
+ logging.info(msg)
583
+ except Exception as e:
584
+ logging.error(e)
585
+ msg = f"{STANDARD_ERROR_MSG}: {e}"
586
+ if dont_change_lora_selector:
587
+ return model, msg
588
+ else:
589
+ return model, msg, gr.Dropdown.update(choices=lora_choices, visible=lora_selector_visibility)
590
+
591
+
592
+ if __name__ == "__main__":
593
+ with open("config.json", "r") as f:
594
+ openai_api_key = cjson.load(f)["openai_api_key"]
595
+ # set logging level to debug
596
+ logging.basicConfig(level=logging.DEBUG)
597
+ # client = ModelManager(model_name="gpt-3.5-turbo", access_key=openai_api_key)
598
+ client = get_model(model_name="chatglm-6b-int4")
599
+ chatbot = []
600
+ stream = False
601
+ # 测试账单功能
602
+ logging.info(colorama.Back.GREEN + "测试账单功能" + colorama.Back.RESET)
603
+ logging.info(client.billing_info())
604
+ # 测试问答
605
+ logging.info(colorama.Back.GREEN + "测试问答" + colorama.Back.RESET)
606
+ question = "巴黎是中国的首都吗?"
607
+ for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
608
+ logging.info(i)
609
+ logging.info(f"测试问答后history : {client.history}")
610
+ # 测试记忆力
611
+ logging.info(colorama.Back.GREEN + "测试记忆力" + colorama.Back.RESET)
612
+ question = "我刚刚问了你什么问题?"
613
+ for i in client.predict(inputs=question, chatbot=chatbot, stream=stream):
614
+ logging.info(i)
615
+ logging.info(f"测试记忆力后history : {client.history}")
616
+ # 测试重试功能
617
+ logging.info(colorama.Back.GREEN + "测试重试功能" + colorama.Back.RESET)
618
+ for i in client.retry(chatbot=chatbot, stream=stream):
619
+ logging.info(i)
620
+ logging.info(f"重试后history : {client.history}")
621
+ # # 测试总结功能
622
+ # print(colorama.Back.GREEN + "测试总结功能" + colorama.Back.RESET)
623
+ # chatbot, msg = client.reduce_token_size(chatbot=chatbot)
624
+ # print(chatbot, msg)
625
+ # print(f"总结后history: {client.history}")