Spaces:
Sleeping
Sleeping
Tuchuanhuhuhu
commited on
Commit
•
ddd1766
1
Parent(s):
469aa95
LLaMA + LoRA可以用了
Browse files- modules/base_model.py +2 -0
- modules/models.py +28 -31
modules/base_model.py
CHANGED
@@ -70,6 +70,7 @@ class BaseLLMModel:
|
|
70 |
self.interrupted = False
|
71 |
self.system_prompt = system_prompt
|
72 |
self.api_key = None
|
|
|
73 |
|
74 |
self.temperature = temperature
|
75 |
self.top_p = top_p
|
@@ -263,6 +264,7 @@ class BaseLLMModel:
|
|
263 |
display_reference = ""
|
264 |
|
265 |
if (
|
|
|
266 |
self.api_key is None
|
267 |
and not shared.state.multi_api_key
|
268 |
):
|
|
|
70 |
self.interrupted = False
|
71 |
self.system_prompt = system_prompt
|
72 |
self.api_key = None
|
73 |
+
self.need_api_key = False
|
74 |
|
75 |
self.temperature = temperature
|
76 |
self.top_p = top_p
|
|
|
264 |
display_reference = ""
|
265 |
|
266 |
if (
|
267 |
+
self.need_api_key and
|
268 |
self.api_key is None
|
269 |
and not shared.state.multi_api_key
|
270 |
):
|
modules/models.py
CHANGED
@@ -42,6 +42,7 @@ class OpenAIClient(BaseLLMModel):
|
|
42 |
system_prompt=system_prompt,
|
43 |
)
|
44 |
self.api_key = api_key
|
|
|
45 |
self.headers = {
|
46 |
"Content-Type": "application/json",
|
47 |
"Authorization": f"Bearer {self.api_key}",
|
@@ -276,7 +277,7 @@ class LLaMA_Client(BaseLLMModel):
|
|
276 |
from lmflow.datasets.dataset import Dataset
|
277 |
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
278 |
from lmflow.models.auto_model import AutoModel
|
279 |
-
from lmflow.args import ModelArguments, DatasetArguments,
|
280 |
model_path = None
|
281 |
if os.path.exists("models"):
|
282 |
model_dirs = os.listdir("models")
|
@@ -286,36 +287,12 @@ class LLaMA_Client(BaseLLMModel):
|
|
286 |
model_source = model_path
|
287 |
else:
|
288 |
raise Exception(f"models目录下没有这个模型: {model_name}")
|
|
|
|
|
289 |
self.max_generation_token = 1000
|
290 |
pipeline_name = "inferencer"
|
291 |
-
PipelineArguments = AutoArguments.get_pipeline_args_class(pipeline_name)
|
292 |
-
|
293 |
-
"""
|
294 |
-
if [ $# -ge 2 ]; then
|
295 |
-
lora_args="--lora_model_path $2"
|
296 |
-
fi
|
297 |
-
CUDA_VISIBLE_DEVICES=2 \
|
298 |
-
deepspeed examples/chatbot.py \
|
299 |
-
--deepspeed configs/ds_config_chatbot.json \
|
300 |
-
--model_name_or_path ${model} \
|
301 |
-
${lora_args}
|
302 |
-
|
303 |
-
model_args:
|
304 |
-
ModelArguments(model_name_or_path='/home/guest/llm_models/llama/7B', lora_model_path='/home/guest/llm_models/lora/baize-lora-7B', model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
305 |
-
pipeline_args:
|
306 |
-
InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
307 |
-
"""
|
308 |
-
|
309 |
-
# parser = HfArgumentParser(
|
310 |
-
# (
|
311 |
-
# ModelArguments,
|
312 |
-
# PipelineArguments,
|
313 |
-
# ChatbotArguments,
|
314 |
-
# )
|
315 |
-
# )
|
316 |
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
317 |
pipeline_args = InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
318 |
-
# model_args, pipeline_args, chatbot_args = parser.parse_args_into_dataclasses()
|
319 |
|
320 |
with open(pipeline_args.deepspeed, "r") as f:
|
321 |
ds_config = json.load(f)
|
@@ -326,7 +303,7 @@ class LLaMA_Client(BaseLLMModel):
|
|
326 |
ds_config=ds_config,
|
327 |
)
|
328 |
|
329 |
-
# We don't need input data
|
330 |
data_args = DatasetArguments(dataset_path=None)
|
331 |
self.dataset = Dataset(data_args)
|
332 |
|
@@ -379,7 +356,28 @@ class LLaMA_Client(BaseLLMModel):
|
|
379 |
return response, len(response)
|
380 |
|
381 |
def get_answer_stream_iter(self):
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
yield response
|
384 |
|
385 |
|
@@ -396,9 +394,7 @@ class ModelManager:
|
|
396 |
top_p=None,
|
397 |
system_prompt=None,
|
398 |
) -> BaseLLMModel:
|
399 |
-
print(lora_model_path)
|
400 |
msg = f"模型设置为了: {model_name}"
|
401 |
-
logging.info(msg)
|
402 |
model_type = ModelType.get_type(model_name)
|
403 |
lora_selector_visibility = False
|
404 |
lora_choices = []
|
@@ -435,6 +431,7 @@ class ModelManager:
|
|
435 |
pass
|
436 |
elif model_type == ModelType.Unknown:
|
437 |
raise ValueError(f"未知模型: {model_name}")
|
|
|
438 |
except Exception as e:
|
439 |
logging.error(e)
|
440 |
msg = f"{STANDARD_ERROR_MSG}: {e}"
|
|
|
42 |
system_prompt=system_prompt,
|
43 |
)
|
44 |
self.api_key = api_key
|
45 |
+
self.need_api_key = True
|
46 |
self.headers = {
|
47 |
"Content-Type": "application/json",
|
48 |
"Authorization": f"Bearer {self.api_key}",
|
|
|
277 |
from lmflow.datasets.dataset import Dataset
|
278 |
from lmflow.pipeline.auto_pipeline import AutoPipeline
|
279 |
from lmflow.models.auto_model import AutoModel
|
280 |
+
from lmflow.args import ModelArguments, DatasetArguments, InferencerArguments
|
281 |
model_path = None
|
282 |
if os.path.exists("models"):
|
283 |
model_dirs = os.listdir("models")
|
|
|
287 |
model_source = model_path
|
288 |
else:
|
289 |
raise Exception(f"models目录下没有这个模型: {model_name}")
|
290 |
+
if lora_path is not None:
|
291 |
+
lora_path = f"lora/{lora_path}"
|
292 |
self.max_generation_token = 1000
|
293 |
pipeline_name = "inferencer"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
model_args = ModelArguments(model_name_or_path=model_source, lora_model_path=lora_path, model_type=None, config_overrides=None, config_name=None, tokenizer_name=None, cache_dir=None, use_fast_tokenizer=True, model_revision='main', use_auth_token=False, torch_dtype=None, use_lora=False, lora_r=8, lora_alpha=32, lora_dropout=0.1, use_ram_optimized_load=True)
|
295 |
pipeline_args = InferencerArguments(local_rank=0, random_seed=1, deepspeed='configs/ds_config_chatbot.json', mixed_precision='bf16')
|
|
|
296 |
|
297 |
with open(pipeline_args.deepspeed, "r") as f:
|
298 |
ds_config = json.load(f)
|
|
|
303 |
ds_config=ds_config,
|
304 |
)
|
305 |
|
306 |
+
# We don't need input data
|
307 |
data_args = DatasetArguments(dataset_path=None)
|
308 |
self.dataset = Dataset(data_args)
|
309 |
|
|
|
356 |
return response, len(response)
|
357 |
|
358 |
def get_answer_stream_iter(self):
|
359 |
+
context = self._get_llama_style_input()
|
360 |
+
|
361 |
+
input_dataset = self.dataset.from_dict(
|
362 |
+
{"type": "text_only", "instances": [{"text": context}]}
|
363 |
+
)
|
364 |
+
|
365 |
+
output_dataset = self.inferencer.inference(
|
366 |
+
model=self.model,
|
367 |
+
dataset=input_dataset,
|
368 |
+
max_new_tokens=self.max_generation_token,
|
369 |
+
temperature=self.temperature,
|
370 |
+
)
|
371 |
+
|
372 |
+
response = output_dataset.to_dict()["instances"][0]["text"]
|
373 |
+
|
374 |
+
try:
|
375 |
+
index = response.index(self.end_string)
|
376 |
+
except ValueError:
|
377 |
+
response += self.end_string
|
378 |
+
index = response.index(self.end_string)
|
379 |
+
|
380 |
+
response = response[: index + 1]
|
381 |
yield response
|
382 |
|
383 |
|
|
|
394 |
top_p=None,
|
395 |
system_prompt=None,
|
396 |
) -> BaseLLMModel:
|
|
|
397 |
msg = f"模型设置为了: {model_name}"
|
|
|
398 |
model_type = ModelType.get_type(model_name)
|
399 |
lora_selector_visibility = False
|
400 |
lora_choices = []
|
|
|
431 |
pass
|
432 |
elif model_type == ModelType.Unknown:
|
433 |
raise ValueError(f"未知模型: {model_name}")
|
434 |
+
logging.info(msg)
|
435 |
except Exception as e:
|
436 |
logging.error(e)
|
437 |
msg = f"{STANDARD_ERROR_MSG}: {e}"
|