from __future__ import annotations from typing import TYPE_CHECKING, List import logging import json import commentjson as cjson import os import sys import requests import urllib3 from tqdm import tqdm import colorama from duckduckgo_search import ddg import asyncio import aiohttp from enum import Enum from .presets import * from .llama_func import * from .utils import * from . import shared from .config import retrieve_proxy class ModelType(Enum): OpenAI = 0 ChatGLM = 1 LLaMA = 2 @classmethod def get_type(cls, model_name: str): model_type = None if "gpt" in model_name.lower(): model_type = ModelType.OpenAI elif "chatglm" in model_name.upper(): model_type = ModelType.ChatGLM else: model_type = ModelType.LLaMA return model_type class BaseLLMModel: def __init__(self, model_name, temperature=1.0, top_p=1.0, max_generation_token=None, system_prompt="") -> None: self.history = [] self.all_token_counts = [] self.model_name = model_name self.model_type = ModelType.get_type(model_name) self.api_key = None self.token_upper_limit = MODEL_TOKEN_LIMIT[model_name] self.max_generation_token = max_generation_token if max_generation_token is not None else self.token_upper_limit self.interrupted = False self.temperature = temperature self.top_p = top_p self.system_prompt = system_prompt def get_answer_stream_iter(self): """stream predict, need to be implemented conversations are stored in self.history, with the most recent question, in OpenAI format should return a generator, each time give the next word (str) in the answer """ pass def get_answer_at_once(self): """predict at once, need to be implemented conversations are stored in self.history, with the most recent question, in OpenAI format Should return: the answer (str) total token count (int) """ pass def billing_info(self): """get billing infomation, inplement if needed""" return billing_not_applicable_msg def count_token(self, user_input): """get token count from input, implement if needed """ return 0 def stream_next_chatbot( self, inputs, chatbot, fake_input=None, display_append="" ): def get_return_value(): return chatbot, status_text status_text = "开始实时传输回答……" if fake_input: chatbot.append((fake_input, "")) else: chatbot.append((inputs, "")) user_token_count = self.count_token(inputs) self.all_token_counts.append(user_token_count) logging.debug(f"输入token计数: {user_token_count}") stream_iter = self.get_answer_stream_iter() for partial_text in stream_iter: self.history[-1] = construct_assistant(partial_text) chatbot[-1] = (chatbot[-1][0], partial_text + display_append) self.all_token_counts[-1] += 1 status_text = self.token_message() yield get_return_value() def next_chatbot_at_once( self, inputs, chatbot, fake_input=None, display_append="" ): if fake_input: chatbot.append((fake_input, "")) else: chatbot.append((inputs, "")) if fake_input is not None: user_token_count = self.count_token(fake_input) else: user_token_count = self.count_token(inputs) self.all_token_counts.append(user_token_count) ai_reply, total_token_count = self.get_answer_at_once() if fake_input is not None: self.history[-2] = construct_user(fake_input) self.history[-1] = construct_assistant(ai_reply) chatbot[-1] = (chatbot[-1][0], ai_reply+display_append) if fake_input is not None: self.all_token_counts[-1] += count_token(construct_assistant(ai_reply)) else: self.all_token_counts[-1] = total_token_count - sum(self.all_token_counts) status_text = self.token_message() return chatbot, status_text def predict( self, inputs, chatbot, stream=False, use_websearch=False, files=None, reply_language="中文", should_check_token_count=True, ): # repetition_penalty, top_k from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery from llama_index.indices.query.schema import QueryBundle from langchain.llms import OpenAIChat logging.info( "输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL ) if should_check_token_count: yield chatbot + [(inputs, "")], "开始生成回答……" if reply_language == "跟随问题语言(不稳定)": reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." old_inputs = None display_reference = [] limited_context = False if files and self.api_key: limited_context = True old_inputs = inputs msg = "加载索引中……(这可能需要几分钟)" logging.info(msg) yield chatbot + [(inputs, "")], msg index = construct_index(self.api_key, file_src=files) msg = "索引构建完成,获取回答中……" logging.info(msg) yield chatbot + [(inputs, "")], msg with retrieve_proxy(): llm_predictor = LLMPredictor( llm=OpenAIChat(temperature=0, model_name=self.model_name) ) prompt_helper = PromptHelper( max_input_size=4096, num_output=5, max_chunk_overlap=20, chunk_size_limit=600, ) from llama_index import ServiceContext service_context = ServiceContext.from_defaults( llm_predictor=llm_predictor, prompt_helper=prompt_helper ) query_object = GPTVectorStoreIndexQuery( index.index_struct, service_context=service_context, similarity_top_k=5, vector_store=index._vector_store, docstore=index._docstore, ) query_bundle = QueryBundle(inputs) nodes = query_object.retrieve(query_bundle) reference_results = [n.node.text for n in nodes] reference_results = add_source_numbers(reference_results, use_source=False) display_reference = add_details(reference_results) display_reference = "\n\n" + "".join(display_reference) inputs = ( replace_today(PROMPT_TEMPLATE) .replace("{query_str}", inputs) .replace("{context_str}", "\n\n".join(reference_results)) .replace("{reply_language}", reply_language) ) elif use_websearch: limited_context = True search_results = ddg(inputs, max_results=5) old_inputs = inputs reference_results = [] for idx, result in enumerate(search_results): logging.debug(f"搜索结果{idx + 1}:{result}") domain_name = urllib3.util.parse_url(result["href"]).host reference_results.append([result["body"], result["href"]]) display_reference.append( f"{idx+1}. [{domain_name}]({result['href']})\n" ) reference_results = add_source_numbers(reference_results) display_reference = "\n\n" + "".join(display_reference) inputs = ( replace_today(WEBSEARCH_PTOMPT_TEMPLATE) .replace("{query}", inputs) .replace("{web_results}", "\n\n".join(reference_results)) .replace("{reply_language}", reply_language) ) else: display_reference = "" if len(self.api_key) == 0 and not shared.state.multi_api_key: status_text = standard_error_msg + no_apikey_msg logging.info(status_text) chatbot.append((inputs, "")) if len(self.history) == 0: self.history.append(construct_user(inputs)) self.history.append("") self.all_token_counts.append(0) else: self.history[-2] = construct_user(inputs) yield chatbot + [(inputs, "")], status_text return elif len(inputs.strip()) == 0: status_text = standard_error_msg + no_input_msg logging.info(status_text) yield chatbot + [(inputs, "")], status_text return self.history.append(construct_user(inputs)) self.history.append(construct_assistant("")) if stream: logging.debug("使用流式传输") iter = self.stream_next_chatbot( inputs, chatbot, fake_input=old_inputs, display_append=display_reference, ) for chatbot, status_text in iter: yield chatbot, status_text if self.interrupted: self.recover() break else: logging.debug("不使用流式传输") chatbot, status_text = self.next_chatbot_at_once( inputs, chatbot, fake_input=old_inputs, display_append=display_reference, ) yield chatbot, status_text if len(self.history) > 1 and self.history[-1]["content"] != inputs: logging.info( "回答为:" + colorama.Fore.BLUE + f"{self.history[-1]['content']}" + colorama.Style.RESET_ALL ) if limited_context: self.history = self.history[-4:] self.all_token_counts = self.all_token_counts[-2:] max_token = self.token_upper_limit - TOKEN_OFFSET if sum(self.all_token_counts) > max_token and should_check_token_count: count = 0 while sum(self.all_token_counts) > self.token_upper_limit * REDUCE_TOKEN_FACTOR and sum(self.all_token_counts) > 0: count += 1 del self.all_token_counts[0] del self.history[:2] logging.info(status_text) status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" yield chatbot, status_text def retry( self, chatbot, stream=False, use_websearch=False, files=None, reply_language="中文", ): logging.info("重试中……") if len(self.history) == 0: yield chatbot, f"{standard_error_msg}上下文是空的" return del self.history[-2:] inputs = chatbot[-1][0] self.all_token_counts.pop() iter = self.predict( inputs, chatbot, stream=stream, use_websearch=use_websearch, files=files, reply_language=reply_language, ) for x in iter: yield x logging.info("重试完毕") # def reduce_token_size(self, chatbot): # logging.info("开始减少token数量……") # chatbot, status_text = self.next_chatbot_at_once( # summarize_prompt, # chatbot # ) # max_token_count = self.token_upper_limit * REDUCE_TOKEN_FACTOR # num_chat = find_n(self.all_token_counts, max_token_count) # logging.info(f"previous_token_count: {self.all_token_counts}, keeping {num_chat} chats") # chatbot = chatbot[:-1] # self.history = self.history[-2*num_chat:] if num_chat > 0 else [] # self.all_token_counts = self.all_token_counts[-num_chat:] if num_chat > 0 else [] # msg = f"保留了最近{num_chat}轮对话" # logging.info(msg) # logging.info("减少token数量完毕") # return chatbot, msg + "," + self.token_message(self.all_token_counts if len(self.all_token_counts) > 0 else [0]) def interrupt(self): self.interrupted = True def recover(self): self.interrupted = False def set_temprature(self, new_temprature): self.temperature = new_temprature def set_top_p(self, new_top_p): self.top_p = new_top_p def reset(self): self.history = [] self.all_token_counts = [] self.interrupted = False return [], self.token_message([0]) def delete_first_conversation(self): if self.history: del self.history[:2] del self.all_token_counts[0] return self.token_message() def delete_last_conversation(self, chatbot): if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]: msg = "由于包含报错信息,只删除chatbot记录" chatbot.pop() return chatbot, self.history if len(self.history) > 0: self.history.pop() self.history.pop() if len(chatbot) > 0: msg = "删除了一组chatbot对话" chatbot.pop() if len(self.all_token_counts) > 0: msg = "删除了一组对话的token计数记录" self.all_token_counts.pop() msg = "删除了一组对话" return chatbot, msg def token_message(self, token_lst = None): if token_lst is None: token_lst = self.all_token_counts token_sum = 0 for i in range(len(token_lst)): token_sum += sum(token_lst[: i + 1]) return f"Token 计数: {sum(token_lst)},本次对话累计消耗了 {token_sum} tokens" def save_chat_history(self, filename, chatbot, user_name): if filename == "": return if not filename.endswith(".json"): filename += ".json" return save_file(filename, self.system_prompt, self.history, chatbot, user_name) def export_markdown(self, filename, chatbot, user_name): if filename == "": return if not filename.endswith(".md"): filename += ".md" return save_file(filename, self.system_prompt, self.history, chatbot, user_name) def load_chat_history(self, filename, chatbot, user_name): logging.info(f"{user_name} 加载对话历史中……") if type(filename) != str: filename = filename.name try: with open(os.path.join(HISTORY_DIR / user_name, filename), "r") as f: json_s = json.load(f) try: if type(json_s["history"][0]) == str: logging.info("历史记录格式为旧版,正在转换……") new_history = [] for index, item in enumerate(json_s["history"]): if index % 2 == 0: new_history.append(construct_user(item)) else: new_history.append(construct_assistant(item)) json_s["history"] = new_history logging.info(new_history) except: # 没有对话历史 pass logging.info(f"{user_name} 加载对话历史完毕") self.history = json_s["history"] return filename, json_s["system"], json_s["chatbot"] except FileNotFoundError: logging.info(f"{user_name} 没有找到对话历史文件,不执行任何操作") return filename, self.system_prompt, chatbot