import os import logging import colorama import PyPDF2 from tqdm import tqdm from modules.presets import * from modules.utils import * from modules.config import local_embedding def get_index_name(file_src): file_paths = [x.name for x in file_src] file_paths.sort(key=lambda x: os.path.basename(x)) md5_hash = hashlib.md5() for file_path in file_paths: with open(file_path, "rb") as f: while chunk := f.read(8192): md5_hash.update(chunk) return md5_hash.hexdigest() def get_documents(file_src): from langchain.schema import Document from langchain.text_splitter import TokenTextSplitter text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=30) documents = [] logging.debug("Loading documents...") logging.debug(f"file_src: {file_src}") for file in file_src: filepath = file.name filename = os.path.basename(filepath) file_type = os.path.splitext(filename)[1] logging.info(f"loading file: {filename}") try: if file_type == ".pdf": logging.debug("Loading PDF...") try: from modules.pdf_func import parse_pdf from modules.config import advance_docs two_column = advance_docs["pdf"].get("two_column", False) pdftext = parse_pdf(filepath, two_column).text except: pdftext = "" with open(filepath, "rb") as pdfFileObj: pdfReader = PyPDF2.PdfReader(pdfFileObj) for page in tqdm(pdfReader.pages): pdftext += page.extract_text() texts = Document(page_content=pdftext, metadata={"source": filepath}) elif file_type == ".docx": logging.debug("Loading Word...") from langchain.document_loaders import UnstructuredWordDocumentLoader loader = UnstructuredWordDocumentLoader(filepath) texts = loader.load() elif file_type == ".pptx": logging.debug("Loading PowerPoint...") from langchain.document_loaders import UnstructuredPowerPointLoader loader = UnstructuredPowerPointLoader(filepath) texts = loader.load() elif file_type == ".epub": logging.debug("Loading EPUB...") from langchain.document_loaders import UnstructuredEPubLoader loader = UnstructuredEPubLoader(filepath) texts = loader.load() elif file_type == ".xlsx": logging.debug("Loading Excel...") text_list = excel_to_string(filepath) for elem in text_list: documents.append(Document(page_content=elem, metadata={"source": filepath})) continue else: logging.debug("Loading text file...") from langchain.document_loaders import TextLoader loader = TextLoader(filepath, "utf8") texts = loader.load() except Exception as e: import traceback logging.error(f"Error loading file: {filename}") traceback.print_exc() texts = text_splitter.split_documents([texts]) documents.extend(texts) logging.debug("Documents loaded.") return documents def construct_index( api_key, file_src, max_input_size=4096, num_outputs=5, max_chunk_overlap=20, chunk_size_limit=600, embedding_limit=None, separator=" ", ): from langchain.chat_models import ChatOpenAI from langchain.vectorstores import FAISS if api_key: os.environ["OPENAI_API_KEY"] = api_key else: # 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx" chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit embedding_limit = None if embedding_limit == 0 else embedding_limit separator = " " if separator == "" else separator index_name = get_index_name(file_src) index_path = f"./index/{index_name}" if local_embedding: from langchain.embeddings.huggingface import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2") else: from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings(openai_api_base=os.environ.get("OPENAI_API_BASE", None), openai_api_key=os.environ.get("OPENAI_EMBEDDING_API_KEY", api_key)) if os.path.exists(index_path): logging.info("找到了缓存的索引文件,加载中……") return FAISS.load_local(index_path, embeddings) else: try: documents = get_documents(file_src) logging.info("构建索引中……") with retrieve_proxy(): index = FAISS.from_documents(documents, embeddings) logging.debug("索引构建完成!") os.makedirs("./index", exist_ok=True) index.save_local(index_path) logging.debug("索引已保存至本地!") return index except Exception as e: import traceback logging.error("索引构建失败!%s", e) traceback.print_exc() return None