"""Contains all of the components that can be used with Gradio Interface / Blocks. Along with the docs for each component, you can find the names of example demos that use each component. These demos are located in the `demo` directory.""" from __future__ import annotations from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type import json import gradio as gr # import openai import os import traceback import requests # import markdown import csv import mdtex2html from pypinyin import lazy_pinyin from presets import * if TYPE_CHECKING: from typing import TypedDict class DataframeData(TypedDict): headers: List[str] data: List[List[str | int | bool]] initial_prompt = "You are a helpful assistant." API_URL = "https://api.openai.com/v1/chat/completions" HISTORY_DIR = "history" TEMPLATES_DIR = "templates" def postprocess( self, y: List[Tuple[str | None, str | None]] ) -> List[Tuple[str | None, str | None]]: """ Parameters: y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. Returns: List of tuples representing the message and response. Each message and response will be a string of HTML. """ if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( # None if message is None else markdown.markdown(message), # None if response is None else markdown.markdown(response), None if message is None else mdtex2html.convert((message)), None if response is None else mdtex2html.convert(response), ) return y def parse_text(text): lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
            else:
                lines[i] = f'
' else: if i > 0: if count % 2 == 1: line = line.replace("`", "\`") line = line.replace("<", "<") line = line.replace(">", ">") line = line.replace(" ", " ") line = line.replace("*", "*") line = line.replace("_", "_") line = line.replace("-", "-") line = line.replace(".", ".") line = line.replace("!", "!") line = line.replace("(", "(") line = line.replace(")", ")") line = line.replace("$", "$") lines[i] = "
"+line text = "".join(lines) return text def construct_text(role, text): return {"role": role, "content": text} def construct_user(text): return construct_text("user", text) def construct_system(text): return construct_text("system", text) def construct_assistant(text): return construct_text("assistant", text) def construct_token_message(token, stream=False): extra = "【仅包含回答的计数】 " if stream else "" return f"{extra}Token 计数: {token}" def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream): headers = { "Content-Type": "application/json", "Authorization": f"Bearer {openai_api_key}" } history = [construct_system(system_prompt), *history] payload = { "model": "gpt-3.5-turbo", "messages": history, # [{"role": "user", "content": f"{inputs}"}], "temperature": temperature, # 1.0, "top_p": top_p, # 1.0, "n": 1, "stream": stream, "presence_penalty": 0, "frequency_penalty": 0, } if stream: timeout = timeout_streaming else: timeout = timeout_all response = requests.post(API_URL, headers=headers, json=payload, stream=True, timeout=timeout) return response def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature): def get_return_value(): return chatbot, history, status_text, [*previous_token_count, token_counter] token_counter = 0 partial_words = "" counter = 0 status_text = "OK" history.append(construct_user(inputs)) try: response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True) except requests.exceptions.ConnectTimeout: status_text = standard_error_msg + error_retrieve_prompt yield get_return_value() return chatbot.append((parse_text(inputs), "")) yield get_return_value() for chunk in response.iter_lines(): if counter == 0: counter += 1 continue counter += 1 # check whether each line is non-empty if chunk: chunk = chunk.decode() chunklength = len(chunk) chunk = json.loads(chunk[6:]) # decode each line as response data is in bytes if chunklength > 6 and "delta" in chunk['choices'][0]: finish_reason = chunk['choices'][0]['finish_reason'] status_text = construct_token_message(sum(previous_token_count)+token_counter, stream=True) if finish_reason == "stop": yield get_return_value() break partial_words = partial_words + chunk['choices'][0]["delta"]["content"] if token_counter == 0: history.append(construct_assistant(" " + partial_words)) else: history[-1] = construct_assistant(partial_words) chatbot[-1] = (parse_text(inputs), parse_text(partial_words)) token_counter += 1 yield get_return_value() def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, previous_token_count, top_p, temperature): history.append(construct_user(inputs)) try: response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False) except requests.exceptions.ConnectTimeout: status_text = standard_error_msg + error_retrieve_prompt return chatbot, history, status_text, previous_token_count response = json.loads(response.text) content = response["choices"][0]["message"]["content"] history.append(construct_assistant(content)) chatbot.append((parse_text(inputs), parse_text(content))) total_token_count = response["usage"]["total_tokens"] previous_token_count.append(total_token_count - sum(previous_token_count)) status_text = construct_token_message(total_token_count) return chatbot, history, status_text, previous_token_count def predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=False, should_check_token_count = True): # repetition_penalty, top_k if stream: iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature) for chatbot, history, status_text, token_count in iter: yield chatbot, history, status_text, token_count else: chatbot, history, status_text, token_count = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature) yield chatbot, history, status_text, token_count if stream: max_token = max_token_streaming else: max_token = max_token_all if sum(token_count) > max_token and should_check_token_count: iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=True) for chatbot, history, status_text, token_count in iter: status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}" yield chatbot, history, status_text, token_count def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False): if len(history) == 0: yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count return history.pop() inputs = history.pop()["content"] token_count.pop() iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream) for x in iter: yield x def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, hidden=False): iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, should_check_token_count=False) for chatbot, history, status_text, previous_token_count in iter: history = history[-2:] token_count = previous_token_count[-1:] if hidden: chatbot.pop() yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count def delete_last_conversation(chatbot, history, previous_token_count, streaming): if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]: chatbot.pop() return chatbot, history if len(history) > 0: history.pop() history.pop() if len(chatbot) > 0: chatbot.pop() if len(previous_token_count) > 0: previous_token_count.pop() return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count), streaming) def save_chat_history(filename, system, history, chatbot): if filename == "": return if not filename.endswith(".json"): filename += ".json" os.makedirs(HISTORY_DIR, exist_ok=True) json_s = {"system": system, "history": history, "chatbot": chatbot} print(json_s) with open(os.path.join(HISTORY_DIR, filename), "w") as f: json.dump(json_s, f) def load_chat_history(filename, system, history, chatbot): try: print("Loading from history...") with open(os.path.join(HISTORY_DIR, filename), "r") as f: json_s = json.load(f) print(json_s) return filename, json_s["system"], json_s["history"], json_s["chatbot"] except FileNotFoundError: print("File not found.") return filename, system, history, chatbot def sorted_by_pinyin(list): return sorted(list, key=lambda char: lazy_pinyin(char)[0][0]) def get_file_names(dir, plain=False, filetypes=[".json"]): # find all json files in the current directory and return their names files = [] try: for type in filetypes: files += [f for f in os.listdir(dir) if f.endswith(type)] except FileNotFoundError: files = [] files = sorted_by_pinyin(files) if files == []: files = [""] if plain: return files else: return gr.Dropdown.update(choices=files) def get_history_names(plain=False): return get_file_names(HISTORY_DIR, plain) def load_template(filename, mode=0): lines = [] print("Loading template...") if filename.endswith(".json"): with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f: lines = json.load(f) lines = [[i["act"], i["prompt"]] for i in lines] else: with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile: reader = csv.reader(csvfile) lines = list(reader) lines = lines[1:] if mode == 1: return sorted_by_pinyin([row[0] for row in lines]) elif mode == 2: return {row[0]:row[1] for row in lines} else: choices = sorted_by_pinyin([row[0] for row in lines]) return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0]) def get_template_names(plain=False): return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"]) def get_template_content(templates, selection, original_system_prompt): try: return templates[selection] except: return original_system_prompt def reset_state(): return [], [], [], construct_token_message(0) def compose_system(system_prompt): return {"role": "system", "content": system_prompt} def compose_user(user_input): return {"role": "user", "content": user_input} def reset_textbox(): return gr.update(value='')