contract-review / app.py
Heiko Hotz
initial commit
ea00796
raw
history blame
5 kB
import collections
import math
import re
import string
import streamlit as st
from transformers.pipelines import pipeline
import json
import sys
from predict import run_prediction
import random
from io import StringIO
import requests
import boto3
from transformers import (
AutoConfig,
AutoModelForQuestionAnswering,
AutoTokenizer,
squad_convert_examples_to_features
)
from transformers.data.processors.squad import SquadResult, SquadV2Processor, SquadExample
from transformers.data.metrics.squad_metrics import compute_predictions_logits
import gradio as gr
import json
import torch
import time
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
st.set_page_config(layout="wide")
st.cache(show_spinner=False, persist=True)
def load_questions():
questions = []
with open('data/questions.txt') as f:
questions = f.readlines()
# questions = []
# for i, q in enumerate(data['data'][0]['paragraphs'][0]['qas']):
# question = data['data'][0]['paragraphs'][0]['qas'][i]['question']
# questions.append(question)
return questions
st.cache(show_spinner=False, persist=True)
def load_contracts():
with open('data/test.json') as json_file:
data = json.load(json_file)
contracts = []
for i, q in enumerate(data['data']):
contract = ' '.join(data['data'][i]['paragraphs'][0]['context'].split())
contracts.append(contract)
return contracts
questions = load_questions()
contracts = load_contracts()
### DEFINE SIDEBAR
st.sidebar.title("Interactive Contract Analysis")
st.sidebar.markdown(
"""
Process text with [Huggingface](https://huggingface.co) models and visualize the results.
This model uses a pretrained snapshot trained on the [Atticus](https://www.atticusprojectai.org/) Dataset - CUAD
"""
)
st.sidebar.header("Contract Selection")
# select contract
contracts_drop = ['contract 1', 'contract 2', 'contract 3']
contracts_files = ['contract-1.txt', 'contract-2.txt', 'contract-3.txt']
contract = st.sidebar.selectbox('Please Select a Contract', contracts_drop)
idx = contracts_drop.index(contract)
with open('data/'+contracts_files[idx-1]) as f:
contract_data = f.read()
# upload contract
user_upload = st.sidebar.file_uploader('Please upload your own', type=['docx', 'pdf', 'txt'], accept_multiple_files=False)
print(user_upload)
# process upload
if user_upload is not None:
print(user_upload.name,user_upload.type)
extension = user_upload.name.split('.')[-1].lower()
if extension == 'txt':
print('text file uploaded')
# To convert to a string based IO:
stringio = StringIO(user_upload.getvalue().decode("utf-8"))
# To read file as string:
contract_data = stringio.read()
elif extension == 'pdf':
import PyPDF4
try:
# Extracting Text from PDFs
pdfReader = PyPDF4.PdfFileReader(user_upload)
print(pdfReader.numPages)
contract_data = ''
for i in range(0,pdfReader.numPages):
print(i)
pageobj = pdfReader.getPage(i)
contract_data = contract_data + pageobj.extractText()
except:
st.warning('Unable to read PDF, please try another file')
elif extension == 'docx':
import docx2txt
contract_data = docx2txt.process(user_upload)
else:
st.warning('Unknown uploaded file type, please try again')
results_drop = ['1', '2', '3']
number_results = st.sidebar.selectbox('Select number of results', results_drop)
### DEFINE MAIN PAGE
st.header("Legal Contract Review Demo")
st.write("This demo uses the CUAD dataset for Contract Understanding.")
paragraph = st.text_area(label="Contract",value=contract_data,height=400)
question = st.selectbox('Choose one of the 41 queries from the CUAD dataset:', questions)
if st.button('Analyze'):
if (not len(paragraph)==0) and not (len(question)==0):
print('getting predictions')
with st.spinner(text='Analysis in progress...'):
#predictions = run_prediction([question], paragraph, '../models/roberta-base/')
data = {}
data['question']=[question]
data['context']=paragraph
print(data)
predictions = run_prediction(data['question'], data['context'], 'akdeniz27/roberta-base-cuad', n_best_size=number_results )
# print(resp)
# predictions=resp.json()
# print(predictions)
if predictions['0'] == "":
answer = 'No answer found in document'
else:
if number_results == '1':
answer = predictions['0']
st.text_area(label="Answer", value=f"{answer}")
else:
f = open("nbest.json")
st.success(f.readlines())
st.success("Successfully processed contract!")
else:
st.write("Unable to call model, please select question and contract")