File size: 19,365 Bytes
be791d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, Optional

import torch
import torch.nn.functional as F
from torch import nn

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import ImagePositionalEmbeddings
from diffusers.utils import BaseOutput, deprecate
from diffusers.models.embeddings import PatchEmbed
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.models.modeling_utils import ModelMixin
from einops import rearrange, repeat

try:
    from attention import BasicTransformerBlock
except:
    from .attention import BasicTransformerBlock

@dataclass
class Transformer3DModelOutput(BaseOutput):
    """
    The output of [`Transformer2DModel`].

    Args:
        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
            The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
            distributions for the unnoised latent pixels.
    """

    sample: torch.FloatTensor


class Transformer3DModel(ModelMixin, ConfigMixin):
    """
    A 2D Transformer model for image-like data.

    Parameters:
        num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
        attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
        in_channels (`int`, *optional*):
            The number of channels in the input and output (specify if the input is **continuous**).
        num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
        cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
        sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
            This is fixed during training since it is used to learn a number of position embeddings.
        num_vector_embeds (`int`, *optional*):
            The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
            Includes the class for the masked latent pixel.
        activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
        num_embeds_ada_norm ( `int`, *optional*):
            The number of diffusion steps used during training. Pass if at least one of the norm_layers is
            `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
            added to the hidden states.

            During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
        attention_bias (`bool`, *optional*):
            Configure if the `TransformerBlocks` attention should contain a bias parameter.
    """

    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        sample_size: Optional[int] = None,
        num_vector_embeds: Optional[int] = None,
        patch_size: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        norm_type: str = "layer_norm",
        norm_elementwise_affine: bool = True,
        rotary_emb=None,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
        # Define whether input is continuous or discrete depending on configuration
        self.is_input_continuous = (in_channels is not None) and (patch_size is None)
        self.is_input_vectorized = num_vector_embeds is not None
        self.is_input_patches = in_channels is not None and patch_size is not None

        if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
            deprecation_message = (
                f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
                " incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
                " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
                " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
                " would be very nice if you could open a Pull request for the `transformer/config.json` file"
            )
            deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False)
            norm_type = "ada_norm"

        if self.is_input_continuous and self.is_input_vectorized:
            raise ValueError(
                f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
                " sure that either `in_channels` or `num_vector_embeds` is None."
            )
        elif self.is_input_vectorized and self.is_input_patches:
            raise ValueError(
                f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
                " sure that either `num_vector_embeds` or `num_patches` is None."
            )
        elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches:
            raise ValueError(
                f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
                f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
            )

        # 2. Define input layers
        if self.is_input_continuous:
            self.in_channels = in_channels

            self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
            if use_linear_projection:
                self.proj_in = LoRACompatibleLinear(in_channels, inner_dim)
            else:
                self.proj_in = LoRACompatibleConv(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
        elif self.is_input_vectorized:
            assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size"
            assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed"

            self.height = sample_size
            self.width = sample_size
            self.num_vector_embeds = num_vector_embeds
            self.num_latent_pixels = self.height * self.width

            self.latent_image_embedding = ImagePositionalEmbeddings(
                num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width
            )
        elif self.is_input_patches:
            assert sample_size is not None, "Transformer2DModel over patched input must provide sample_size"

            self.height = sample_size
            self.width = sample_size

            self.patch_size = patch_size
            self.pos_embed = PatchEmbed(
                height=sample_size,
                width=sample_size,
                patch_size=patch_size,
                in_channels=in_channels,
                embed_dim=inner_dim,
            )

        # 3. Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
                    rotary_emb=rotary_emb,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        if self.is_input_continuous:
            # TODO: should use out_channels for continuous projections
            if use_linear_projection:
                self.proj_out = LoRACompatibleLinear(inner_dim, in_channels)
            else:
                self.proj_out = LoRACompatibleConv(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
        elif self.is_input_vectorized:
            self.norm_out = nn.LayerNorm(inner_dim)
            self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1)
        elif self.is_input_patches:
            self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
            self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
            self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
        use_image_num=None,
    ):
        """
        The [`Transformer2DModel`] forward method.

        Args:
            hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
                Input `hidden_states`.
            encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
                Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
                self-attention.
            timestep ( `torch.LongTensor`, *optional*):
                Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
            class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
                Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
                `AdaLayerZeroNorm`.
            encoder_attention_mask ( `torch.Tensor`, *optional*):
                Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:

                    * Mask `(batch, sequence_length)` True = keep, False = discard.
                    * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.

                If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
                above. This bias will be added to the cross-attention scores.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
                tuple.

        Returns:
            If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
            `tuple` where the first element is the sample tensor.
        """
        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # 1. Input
        if self.is_input_continuous: # True

            assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
            if self.training and use_image_num != 0:
                video_length = hidden_states.shape[2] - use_image_num
                hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous()
                encoder_hidden_states_length = encoder_hidden_states.shape[1]
                encoder_hidden_states_video = encoder_hidden_states[:, :encoder_hidden_states_length - use_image_num, ...]
                encoder_hidden_states_video = repeat(encoder_hidden_states_video, 'b m n c -> b (m f) n c', f=video_length).contiguous()
                encoder_hidden_states_image = encoder_hidden_states[:, encoder_hidden_states_length - use_image_num:, ...]
                encoder_hidden_states = torch.cat([encoder_hidden_states_video, encoder_hidden_states_image], dim=1)
                encoder_hidden_states = rearrange(encoder_hidden_states, 'b m n c -> (b m) n c').contiguous()
            else:
                video_length = hidden_states.shape[2]
                hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w").contiguous()
                encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length).contiguous()

            batch, _, height, width = hidden_states.shape
            residual = hidden_states

            hidden_states = self.norm(hidden_states)
            if not self.use_linear_projection:
                hidden_states = self.proj_in(hidden_states)
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
            else:
                inner_dim = hidden_states.shape[1]
                hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
                hidden_states = self.proj_in(hidden_states)
        elif self.is_input_vectorized:
            hidden_states = self.latent_image_embedding(hidden_states)
        elif self.is_input_patches:
            hidden_states = self.pos_embed(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                timestep=timestep,
                cross_attention_kwargs=cross_attention_kwargs,
                class_labels=class_labels,
                video_length=video_length,
                use_image_num=use_image_num,
            )

        # 3. Output
        if self.is_input_continuous:
            if not self.use_linear_projection:
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
                hidden_states = self.proj_out(hidden_states)
            else:
                hidden_states = self.proj_out(hidden_states)
                hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

            output = hidden_states + residual
        elif self.is_input_vectorized:
            hidden_states = self.norm_out(hidden_states)
            logits = self.out(hidden_states)
            # (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
            logits = logits.permute(0, 2, 1)

            # log(p(x_0))
            output = F.log_softmax(logits.double(), dim=1).float()
        elif self.is_input_patches:
            # TODO: cleanup!
            conditioning = self.transformer_blocks[0].norm1.emb(
                timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
            shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
            hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
            hidden_states = self.proj_out_2(hidden_states)

            # unpatchify
            height = width = int(hidden_states.shape[1] ** 0.5)
            hidden_states = hidden_states.reshape(
                shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels)
            )
            hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
            output = hidden_states.reshape(
                shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size)
            )

        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length + use_image_num).contiguous()
        if not return_dict:
            return (output,)

        return Transformer3DModelOutput(sample=output)