import sys,os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import numpy as np import argparse import torch from whisper.audio import load_audio from hubert import hubert_model def load_model(path, device): model = hubert_model.hubert_soft(path) model.eval() model.to(device) return model def pred_vec(model, wavPath, vecPath, device): feats = load_audio(wavPath) feats = torch.from_numpy(feats).to(device) feats = feats[None, None, :] with torch.no_grad(): vec = model.units(feats).squeeze().data.cpu().float().numpy() # print(vec.shape) # [length, dim=256] hop=320 np.save(vecPath, vec, allow_pickle=False) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.description = 'please enter embed parameter ...' parser.add_argument("-w", "--wav", help="wav", dest="wav") parser.add_argument("-v", "--vec", help="vec", dest="vec") args = parser.parse_args() print(args.wav) print(args.vec) wavPath = args.wav vecPath = args.vec device = "cpu" hubert = load_model(os.path.join( "hubert_pretrain", "hubert-soft-0d54a1f4.pt"), device) pred_vec(hubert, wavPath, vecPath, device)