Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow import keras
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
(X_train, y_train) , (X_test, y_test) = keras.datasets.mnist.load_data()
|
9 |
+
|
10 |
+
# Scaling array values so we get values form 0 to 1
|
11 |
+
X_train = X_train / 255
|
12 |
+
X_test = X_test / 255
|
13 |
+
|
14 |
+
# Define a simple feedforward neural network
|
15 |
+
model2 = keras.Sequential([
|
16 |
+
keras.layers.Flatten(input_shape=(28, 28)), # Flatten the 28x28 images
|
17 |
+
keras.layers.Dense(128, activation='relu'),
|
18 |
+
keras.layers.Dense(64, activation='relu'),
|
19 |
+
keras.layers.Dense(10, activation='softmax')
|
20 |
+
])
|
21 |
+
|
22 |
+
# Compile the model
|
23 |
+
model2.compile(optimizer='adam',
|
24 |
+
loss='sparse_categorical_crossentropy', # Corrected the loss function
|
25 |
+
metrics=['accuracy'])
|
26 |
+
|
27 |
+
# Train the model
|
28 |
+
model2.fit(X_train, y_train, epochs=5) # Assuming X_train and y_train are properly loaded
|
29 |
+
|
30 |
+
|
31 |
+
# Function to preprocess the uploaded image
|
32 |
+
def preprocess_image(input_image_path): # Accept file path as input
|
33 |
+
# Load the image using PIL
|
34 |
+
image = Image.open(input_image_path)
|
35 |
+
# Resize and convert the image to grayscale
|
36 |
+
image = image.resize((28, 28)).convert('L')
|
37 |
+
# Convert the image to a NumPy array
|
38 |
+
image_array = np.array(image)
|
39 |
+
# Normalize the pixel values
|
40 |
+
image_array = image_array / 255.0
|
41 |
+
return image_array
|
42 |
+
|
43 |
+
|
44 |
+
# Function to make predictions
|
45 |
+
def predict_digit(input_image_path):
|
46 |
+
# Preprocess the image
|
47 |
+
image_array = preprocess_image(input_image_path)
|
48 |
+
# Reshape the image_array
|
49 |
+
image_array = image_array.reshape(1, 28, 28)
|
50 |
+
|
51 |
+
prediction = model2.predict(image_array)
|
52 |
+
predicted_digit = np.argmax(prediction)
|
53 |
+
otpt = f"Predicted digit: {predicted_digit}"
|
54 |
+
|
55 |
+
return str(otpt)
|
56 |
+
|
57 |
+
|
58 |
+
import gradio as gr
|
59 |
+
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=predict_digit,
|
62 |
+
inputs=gr.Image(type="filepath", label="Upload Image"),
|
63 |
+
outputs=gr.Textbox(text="Predicted Digit"),
|
64 |
+
)
|
65 |
+
|
66 |
+
iface.launch()
|
67 |
+
|
68 |
+
|