WebApp / app.py
measmonysuon's picture
Update app.py
d31071a verified
import gradio as gr
from gradio_client import Client
import os
import logging
# Initialize the client for image generation
client_image = Client("mukaist/DALLE-4K")
# Define resolutions
resolutions = {
"896x1152": (896, 1152),
"1024x1024": (1024, 1024),
"1216x832": (1216, 832)
}
# Define the default style
DEFAULT_STYLE = "3840 x 2160"
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def generate_image(prompt, resolution_key, style=DEFAULT_STYLE):
resolution = resolutions.get(resolution_key, (1024, 1024))
width, height = resolution
full_prompt = f"{prompt}, Canon EOS R5, 4K, Photo-Realistic, appearing photorealistic with super fine details, high resolution, natural look, hyper realistic photography, cinematic lighting, --ar 64:37, --v 6.0, --style raw, --stylize 750"
try:
result = client_image.predict(
prompt=full_prompt,
negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
use_negative_prompt=True,
style=style,
seed=0,
width=width,
height=height,
guidance_scale=5,
randomize_seed=True,
api_name="/run"
)
logger.info("Image generation successful.")
return result
except Exception as e:
logger.error(f"Error generating image: {e}")
return None
def gradio_interface(prompt, resolution_key):
result = generate_image(prompt, resolution_key)
if result and result[0]:
file_path = result[0][0].get('image')
if file_path and os.path.exists(file_path):
return file_path, "The image was generated successfully."
else:
return None, "The image file is not available. Please try again later."
else:
return None, "There was an error processing your photo. Please try again later."
def create_gradio_interface():
with gr.Blocks() as interface:
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
resolution_dropdown = gr.Dropdown(choices=list(resolutions.keys()), label="Resolution", value="1024x1024")
generate_button = gr.Button("Generate")
result_output = gr.Image(label="Generated Image", type="pil")
message_output = gr.Textbox(label="Result", placeholder="Results will be shown here", interactive=False)
generate_button.click(fn=lambda prompt, resolution_key: gradio_interface(prompt, resolution_key),
inputs=[prompt_input, resolution_dropdown],
outputs=[result_output, message_output])
# Add custom CSS to hide the specific footer element
gr.HTML("""
<style>
footer.svelte-1rjryqp {
display: none !important;
}
</style>
""")
return interface
def launch_gradio():
# Launch the Gradio interface
interface = create_gradio_interface()
interface.launch()
if __name__ == "__main__":
launch_gradio()