File size: 4,448 Bytes
1d33068
 
 
 
dea0635
a2d5af8
8e64f0d
1d33068
8e64f0d
 
1d33068
 
 
 
 
8e64f0d
 
1d33068
8e64f0d
 
1d33068
 
 
a2d5af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dea0635
a2d5af8
 
 
 
 
dea0635
a2d5af8
 
 
 
1d33068
dea0635
9a29b5b
dea0635
 
 
 
 
 
 
 
 
 
 
 
8e64f0d
 
 
 
f8957c5
8e64f0d
 
 
 
 
 
dea0635
 
8e64f0d
 
1d33068
 
 
 
 
 
 
 
8e64f0d
1d33068
 
dea0635
 
f5bcaca
1d33068
dea0635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
from gradio_client import Client
import os
import logging
from urllib.parse import parse_qs, urlparse

# Initialize the client for image generation
client_image = Client("mukaist/DALLE-4K")

# Define resolutions
resolutions = {
    "896x1152": (896, 1152),
    "1024x1024": (1024, 1024),
    "1216x832": (1216, 832)
}

# Define the default style
DEFAULT_STYLE = "3840 x 2160"

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def generate_image(prompt, resolution_key, style=DEFAULT_STYLE):
    resolution = resolutions.get(resolution_key, (1024, 1024))
    width, height = resolution
    full_prompt = f"{prompt}, Canon EOS R5, 4K, Photo-Realistic, appearing photorealistic with super fine details, high resolution, natural look, hyper realistic photography, cinematic lighting, --ar 64:37, --v 6.0, --style raw, --stylize 750"
    
    try:
        result = client_image.predict(
            prompt=full_prompt,
            negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
            use_negative_prompt=True,
            style=style,
            seed=0,
            width=width,
            height=height,
            guidance_scale=5,
            randomize_seed=True,
            api_name="/run"
        )
        logger.info("Image generation successful.")
        return result
    except Exception as e:
        logger.error(f"Error generating image: {e}")
        return None

def gradio_interface(prompt, resolution_key):
    result = generate_image(prompt, resolution_key)
    
    if result and result[0]:
        file_path = result[0][0].get('image')
        if file_path and os.path.exists(file_path):
            return file_path, "The image was generated successfully."
        else:
            return None, "The image file is not available. Please try again later."
    else:
        return None, "There was an error processing your photo. Please try again later."

def create_gradio_interface(username):
    with gr.Blocks() as interface:
        # Personalized HTML content
        gr.HTML(f"""
        <script src="https://telegram.org/js/telegram-web-app.js"></script>
        <script>
            document.addEventListener('DOMContentLoaded', function() {{
                window.Telegram.WebApp.init();
                window.Telegram.WebApp.setTitle("Welcome, {username}!");
            }});
        </script>
        <h3>Welcome, {username}! Generate images based on prompts.</h3>
        """)

        # Create input components
        prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
        resolution_dropdown = gr.Dropdown(choices=list(resolutions.keys()), label="Resolution", value="1024x1024")
        generate_button = gr.Button("Generate")
        
        # Create output components
        result_output = gr.Image(label="Generated Image", type="pil")
        message_output = gr.Textbox(label="Result", placeholder="Results will be shown here", interactive=False)
        
        # Set up interaction
        generate_button.click(
            fn=lambda prompt, resolution_key: gradio_interface(prompt, resolution_key),
            inputs=[prompt_input, resolution_dropdown],
            outputs=[result_output, message_output]
        )
        
        gr.HTML("""
        <style>
            footer.svelte-1rjryqp {
                display: none !important;
            }
        </style>
        """)
    
    return interface

def launch_gradio(username):
    interface = create_gradio_interface(username)
    interface.launch()

def extract_username_from_url(url):
    parsed_url = urlparse(url)
    params = parse_qs(parsed_url.query)
    logger.debug(f"Parsed URL parameters: {params}")  # Debugging information
    return params.get('username', ["Guest"])[0]

def get_username_from_url(url):
    # Extract username from the actual URL
    username = extract_username_from_url(url)
    logger.info(f"Extracted username: {username}")
    return username

# Replace this URL with your actual URL where the Gradio app is hosted
url = 'https://measmonysuon-imagen.hf.space/?username=measmony'  # This should be dynamically obtained if needed
username = get_username_from_url(url)
launch_gradio(username)