mediscenario-streamlit-FINAL / dashboard_pull11.py
BZ269
Add files via upload
3fe6513 unverified
import random
from datetime import timedelta, date
import firebase_admin
from firebase_admin import credentials, storage, firestore
import streamlit as st
import streamlit_authenticator as stauth
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import json, os, dotenv
from dotenv import load_dotenv
load_dotenv()
os.environ["FIREBASE_CREDENTIAL"] = dotenv.get_key(dotenv.find_dotenv(), "FIREBASE_CREDENTIAL")
cred = credentials.Certificate(json.loads(os.environ.get("FIREBASE_CREDENTIAL")))
# Initialize Firebase (if not already initialized)
if not firebase_admin._apps:
firebase_admin.initialize_app(cred, {'storageBucket': 'healthhack-store.appspot.com'})
#firebase_admin.initialize_app(cred,{'storageBucket': 'healthhack-store.appspot.com'}) # connecting to firebase
db = firestore.client()
docs = db.collection("clinical_scores").stream()
# Create a list of dictionaries from the documents
data = []
for doc in docs:
doc_dict = doc.to_dict()
doc_dict['document_id'] = doc.id # In case you need the document ID later
data.append(doc_dict)
# Create a DataFrame
df = pd.DataFrame(data)
#print(df)
# Exception handling for irregular grading, e.g. A-, B+
def standardize_grade(value):
if pd.isna(value):
return value
value = str(value).upper().strip() # Convert to string, uppercase and remove leading/trailing spaces
if value and value[0] in ['A', 'B', 'C', 'D', 'E']:
return value[0] # Return the first character if it's A, B, C, D, or E
return value # Return the original value if no match
# Columns to check
columns_to_check = ['hx_others_score', 'hx_AS_score', 'differentials_score', 'global_score']
# Apply the function to the specified columns
df[columns_to_check] = df[columns_to_check].applymap(standardize_grade)
login_info = {
"student1": "password",
"student2": "password",
"student3": "password",
"admin":"admin"
}
# Initialize username variable
username = None
def set_username(x):
st.session_state.username = x
def validate_username(username, password):
if login_info.get(username) == password:
set_username(username)
else:
st.warning("Wrong username or password")
return None
if not st.session_state.get("username"):
## ask to login
st.title("Login")
username = st.text_input("Username:")
password = st.text_input("Password:", type="password")
login_button = st.button("Login", on_click=validate_username, args=[username, password])
if st.session_state.get("username"):
username = st.session_state.get("username")
st.title(f"Hello there, {st.session_state.username}")
# Display logout button
if st.button('Logout'):
# Remove username from session state
del st.session_state.username
# Rerun the app to go back to the login view
st.rerun()
# Convert date from string to datetime if it's not already in datetime format
df['date'] = pd.to_datetime(df['date'], errors='coerce')
# Streamlit page configuration
#st.set_page_config(page_title="Interactive Data Dashboard", layout="wide")
# Use df_selection for filtering data based on authenticated user
if username != 'admin':
df_selection = df[df['name'] == username]
else:
df_selection = df # Admin sees all data
# Chart Title: Student Performance Dashboard
st.title(":bar_chart: Student Performance Dashboard")
st.markdown("##")
# Chart 1: Total attempts
if df_selection.empty:
st.error("No data available to display.")
else:
# Total attempts by name (filtered)
total_attempts_by_name = df_selection.groupby("name")['date'].count().reset_index()
total_attempts_by_name.columns = ['name', 'total_attempts']
# For a single point or multiple points, use a scatter plot
fig_total_attempts = px.scatter(
total_attempts_by_name,
x="name",
y="total_attempts",
title="<b>Total Attempts</b>",
size='total_attempts', # Adjust the size of points
color_discrete_sequence=["#0083B8"] * len(total_attempts_by_name),
template="plotly_white",
text='total_attempts' # Display total_attempts as text labels
)
# Add text annotation for each point
for line in range(0, total_attempts_by_name.shape[0]):
fig_total_attempts.add_annotation(
text=str(total_attempts_by_name['total_attempts'].iloc[line]),
x=total_attempts_by_name['name'].iloc[line],
y=total_attempts_by_name['total_attempts'].iloc[line],
showarrow=True,
font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center",
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="#636363",
ax=20,
ay=-30,
bordercolor="#c7c7c7",
borderwidth=2,
borderpad=4,
bgcolor="#ff7f0e",
opacity=0.8
)
# Update traces for styling
fig_total_attempts.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the scatter plot in Streamlit
st.plotly_chart(fig_total_attempts, use_container_width=True)
# Chart 2 (students only): Personal scores over time
if username != 'admin':
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
#fig = px.bar(df_selection, x='date', y='global_score', title='Your scores!')
if len(df_selection) > 1:
# # If more than one point, use a bar chart
# fig = px.bar(df_selection, x='date', y='global_score', title='Global Score Over Time')
# # fig.update_yaxes(
# # tickmode='array',
# # tickvals=[1, 2, 3, 4, 5], # Reverse the order of tickvals
# # ticktext=['A', 'B','C','D','E'] # Reverse the order of ticktext
# # )
# Mapping dictionary
grade_to_score = {'A': 100, 'B': 80, 'C': 60, 'D': 40, 'E': 20}
# Apply mapping to convert letter grades to numerical scores
df_selection['numeric_score'] = df_selection['global_score'].map(grade_to_score)
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
# Check if there's more than one point in the DataFrame
if len(df_selection) > 1:
# Create a bar chart using Plotly Express
fig = px.bar(df_selection, x='date', y='numeric_score', title='Your scores over time')
else:
# Create a bar chart with just one point
fig = px.bar(df_selection, x='date', y='numeric_score', title='Global Score')
# Manually set the y-axis ticks and labels
fig.update_yaxes(
tickmode='array',
tickvals=list(grade_to_score.values()), # Positions for the ticks
ticktext=list(grade_to_score.keys()), # Text labels for the ticks
range=[0, 120] # Extend the range a bit beyond 100 to accommodate 'A'
)
# # Use st.plotly_chart to display the chart in Streamlit
# st.plotly_chart(fig, use_container_width=True)
else:
# For a single point, use a scatter plot
fig = px.scatter(df_selection, x='date', y='global_score', title='Global Score',
text='global_score', size_max=60)
# Add text annotation
for line in range(0,df_selection.shape[0]):
fig.add_annotation(text=df_selection['global_score'].iloc[line],
x=df_selection['date'].iloc[line], y=df_selection['global_score'].iloc[line],
showarrow=True, font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#636363",
ax=20, ay=-30, bordercolor="#c7c7c7", borderwidth=2, borderpad=4, bgcolor="#ff7f0e",
opacity=0.8)
fig.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the chart in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Show students their scores over time
st.dataframe(df_selection[['date', 'global_score', 'name']])
# Chart 3 (admin only): Global score chart
# Define the order of categories explicitly
order_of_categories = ['A', 'B', 'C', 'D', 'E']
# Convert global_score to a categorical type with the specified order
df_selection['global_score'] = pd.Categorical(df_selection['global_score'], categories=order_of_categories, ordered=True)
# Plot the histogram
fig_score_distribution = px.histogram(
df_selection,
x="global_score",
title="<b>Global Score Distribution</b>",
color_discrete_sequence=["#33CFA5"],
category_orders={"global_score": ["A", "B", "C", "D", "E"]}
)
if username == 'admin':
st.plotly_chart(fig_score_distribution, use_container_width=True)
# Chart 4 (admin only): Students with <5 attempts (filtered)
if username == 'admin':
students_with_less_than_5_attempts = total_attempts_by_name[total_attempts_by_name['total_attempts'] < 5]
fig_less_than_5_attempts = px.bar(
students_with_less_than_5_attempts,
x="name",
y="total_attempts",
title="<b>Students with <5 Attempts</b>",
color_discrete_sequence=["#D62728"] * len(students_with_less_than_5_attempts),
template="plotly_white",
)
if username == 'admin':
st.plotly_chart(fig_less_than_5_attempts, use_container_width=True)
# Selection of a student for detailed view (<5 attempts) - based on filtered data
if username == 'admin':
selected_student_less_than_5 = st.selectbox("Select a student with less than 5 attempts to view details:", students_with_less_than_5_attempts['name'])
if selected_student_less_than_5:
st.write(df_selection[df_selection['name'] == selected_student_less_than_5])
# Chart 5 (admin only): Students with at least one global score of 'C', 'D', 'E' (filtered)
if username == 'admin':
students_with_cde = df_selection[df_selection['global_score'].isin(['C', 'D', 'E'])].groupby("name")['date'].count().reset_index()
students_with_cde.columns = ['name', 'total_attempts']
fig_students_with_cde = px.bar(
students_with_cde,
x="name",
y="total_attempts",
title="<b>Students with at least one global score of 'C', 'D', 'E'</b>",
color_discrete_sequence=["#FF7F0E"] * len(students_with_cde),
template="plotly_white",
)
st.plotly_chart(fig_students_with_cde, use_container_width=True)
# Selection of a student for detailed view (score of 'C', 'D', 'E') - based on filtered data
if username == 'admin':
selected_student_cde = st.selectbox("Select a student with at least one score of 'C', 'D', 'E' to view details:", students_with_cde['name'])
if selected_student_cde:
st.write(df_selection[df_selection['name'] == selected_student_cde])
# Chart 7 (all): Radar Chart
# Mapping grades to numeric values
grade_to_numeric = {'A': 90, 'B': 70, 'C': 50, 'D': 30, 'E': 10}
df.replace(grade_to_numeric, inplace=True)
# Calculate average numeric scores for each category
average_scores = df.groupby('name')[['hx_PC_score', 'hx_AS_score', 'hx_others_score', 'differentials_score']].mean().reset_index()
if username == 'admin':
st.title('Average Scores Radar Chart')
else:
st.title('Performance in each segment as compared to your friends!')
# Categories for the radar chart
categories = ['Presenting complaint', 'Associated symptoms', '(Others)', 'Differentials']
st.markdown("""
###
Double click on the names in the legend to include/exclude them from the plot.
""")
# Custom colors for better contrast
colors = ['gold', 'cyan', 'magenta', 'green']
# Plotly Radar Chart
fig = go.Figure()
for index, row in average_scores.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row['hx_PC_score'], row['hx_AS_score'], row['hx_others_score'], row['differentials_score']],
theta=categories,
fill='toself',
name=row['name'],
line=dict(color=colors[index % len(colors)])
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100], # Numeric range
tickvals=[10, 30, 50, 70, 90], # Positions for the grade labels
ticktext=['E', 'D', 'C', 'B', 'A'] # Grade labels
)),
showlegend=True,
height=600, # Set the height of the figure
width=600 # Set the width of the figure
)
# Display the figure in Streamlit
st.plotly_chart(fig, use_container_width=True)