Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from datetime import datetime | |
print('{}:loading...'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) | |
tokenizer = AutoTokenizer.from_pretrained('line-corporation/japanese-large-lm-1.7b', use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained('line-corporation/japanese-large-lm-1.7b') | |
#tokenizer = AutoTokenizer.from_pretrained('line-corporation/japanese-large-lm-3.6b', use_fast=False) | |
#model = AutoModelForCausalLM.from_pretrained('line-corporation/japanese-large-lm-3.6b') | |
if torch.cuda.is_available(): | |
model.half() | |
model = model.to('cuda') | |
generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=model.device) | |
print('{}:done.'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))) | |
def generate(input_text, maxlen): | |
output = generator( | |
input_text, | |
max_length=maxlen, | |
do_sample=True, | |
num_return_sequences=1, | |
pad_token_id=tokenizer.pad_token_id, | |
bos_token_id=tokenizer.bos_token_id, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
generated_text = output[0]['generated_text'] | |
return generated_text | |
with gr.Blocks(title='text generation ja') as app: | |
gr.Markdown('# Text Generation JA') | |
chatbot = gr.Chatbot(label='generated text') | |
msg = gr.Textbox(label='text') | |
maxlen = gr.Slider(minimum=30, maximum=100, value=30, step=1, label='max length') | |
clear = gr.ClearButton([msg, chatbot]) | |
def respond(message, maxlen, chat_history): | |
if message == '': | |
return '', chat_history | |
bot_message = generate(message, maxlen) | |
chat_history.append((message, bot_message)) | |
return '', chat_history | |
msg.submit(respond, [msg, maxlen, chatbot], [msg, chatbot], concurrency_limit=20) | |
app.launch() | |