File size: 27,857 Bytes
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b79b73
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
59a9ccf
 
 
 
8a6c540
 
 
 
 
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
8a6c540
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a9ccf
8a6c540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
 
 
 
 
 
 
 
 
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
 
 
 
 
59a9ccf
 
 
 
 
 
8a6c540
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a6c540
 
 
 
 
 
59a9ccf
 
 
 
 
 
 
 
8a6c540
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import os,sys

# install environment goods
#os.system("pip -q install dgl -f https://data.dgl.ai/wheels/cu113/repo.html")
os.system('pip install dgl==1.0.2+cu116 -f https://data.dgl.ai/wheels/cu116/repo.html')
#os.system('pip install gradio')
os.environ["DGLBACKEND"] = "pytorch"
#os.system(f'pip install -r ./PROTEIN_GENERATOR/requirements.txt')
print('Modules installed')

os.system('pip install --force gradio==3.28.3')

os.environ["DGLBACKEND"] = "pytorch"

if not os.path.exists('./SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'):
    print('Downloading model weights 1')
    os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt')
    print('Successfully Downloaded')

if not os.path.exists('./SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'):
    print('Downloading model weights 2')
    os.system('wget http://files.ipd.uw.edu/pub/sequence_diffusion/checkpoints/SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt')
    print('Successfully Downloaded')

import numpy as np
import gradio as gr
import py3Dmol
from io import StringIO
import json
import secrets
import copy
import matplotlib.pyplot as plt
from utils.sampler import HuggingFace_sampler
from utils.parsers_inference import parse_pdb
from model.util import writepdb
from utils.inpainting_util import *


plt.rcParams.update({'font.size': 13})

with open('./tmp/args.json','r') as f:
    args = json.load(f)

# manually set checkpoint to load
args['checkpoint'] = None
args['dump_trb'] = False
args['dump_args'] = True
args['save_best_plddt'] = True
args['T'] = 25
args['strand_bias'] = 0.0
args['loop_bias'] = 0.0
args['helix_bias'] = 0.0



def protein_diffusion_model(sequence, seq_len, helix_bias, strand_bias, loop_bias, 
                    secondary_structure, aa_bias, aa_bias_potential, 
                    #target_charge, target_ph, charge_potential, 
                    num_steps, noise, hydrophobic_target_score, hydrophobic_potential,
                    contigs, pssm, seq_mask, str_mask, rewrite_pdb):
    
    dssp_checkpoint = './SEQDIFF_230205_dssp_hotspots_25mask_EQtasks_mod30.pt'
    og_checkpoint = './SEQDIFF_221219_equalTASKS_nostrSELFCOND_mod30.pt'

    model_args = copy.deepcopy(args)

    # make sampler
    S = HuggingFace_sampler(args=model_args)

    # get random prefix 
    S.out_prefix = './tmp/'+secrets.token_hex(nbytes=10).upper()

    # set args
    S.args['checkpoint'] = None
    S.args['dump_trb'] = False
    S.args['dump_args'] = True
    S.args['save_best_plddt'] = True
    S.args['T'] = 20
    S.args['strand_bias'] = 0.0
    S.args['loop_bias'] = 0.0
    S.args['helix_bias'] = 0.0
    S.args['potentials'] = None
    S.args['potential_scale'] = None
    S.args['aa_composition'] = None


    # get sequence if entered and make sure all chars are valid
    alt_aa_dict = {'B':['D','N'],'J':['I','L'],'U':['C'],'Z':['E','Q'],'O':['K']}
    if sequence not in ['',None]:
        L = len(sequence)
        aa_seq = []
        for aa in sequence.upper():
            if aa in alt_aa_dict.keys():
                aa_seq.append(np.random.choice(alt_aa_dict[aa]))
            else:
                aa_seq.append(aa)

        S.args['sequence'] = aa_seq
    elif contigs not in ['',None]:
        S.args['contigs'] = [contigs]
    else:
        S.args['contigs'] = [f'{seq_len}']
        L = int(seq_len)
    
    print('DEBUG: ',rewrite_pdb)
    if rewrite_pdb not in ['',None]:
        S.args['pdb'] = rewrite_pdb.name

    if seq_mask not in ['',None]:
        S.args['inpaint_seq'] = [seq_mask]
    if str_mask not in ['',None]:
        S.args['inpaint_str'] = [str_mask]

    if secondary_structure in ['',None]:
        secondary_structure = None
    else:
        secondary_structure = ''.join(['E' if x == 'S' else x for x in secondary_structure])
        if L < len(secondary_structure):
            secondary_structure = secondary_structure[:len(sequence)]
        elif L == len(secondary_structure):
            pass
        else:
            dseq = L - len(secondary_structure)
            secondary_structure += secondary_structure[-1]*dseq
    

    # potentials
    potential_list = []
    potential_bias_list = []

    if aa_bias not in ['',None]:
        potential_list.append('aa_bias')
        S.args['aa_composition'] = aa_bias
        if aa_bias_potential in ['',None]:
            aa_bias_potential = 3
        potential_bias_list.append(str(aa_bias_potential))
    '''
    if target_charge not in ['',None]:
        potential_list.append('charge')
        if charge_potential in ['',None]:
            charge_potential = 1
        potential_bias_list.append(str(charge_potential))
        S.args['target_charge'] = float(target_charge)
        if target_ph in ['',None]:
            target_ph = 7.4
        S.args['target_pH'] = float(target_ph)
    '''
    
    if hydrophobic_target_score not in ['',None]:
        potential_list.append('hydrophobic')
        S.args['hydrophobic_score'] = float(hydrophobic_target_score)
        if hydrophobic_potential in ['',None]:
            hydrophobic_potential = 3
        potential_bias_list.append(str(hydrophobic_potential))
    
    if pssm not in ['',None]:
        potential_list.append('PSSM')
        potential_bias_list.append('5')
        S.args['PSSM'] = pssm.name
        

    if len(potential_list) > 0:
        S.args['potentials'] = ','.join(potential_list)
        S.args['potential_scale'] = ','.join(potential_bias_list)


    # normalise secondary_structure bias from range 0-0.3
    S.args['secondary_structure'] = secondary_structure
    S.args['helix_bias'] = helix_bias
    S.args['strand_bias'] = strand_bias
    S.args['loop_bias'] = loop_bias
    
    # set T
    if num_steps in ['',None]:
        S.args['T'] = 20
    else:
        S.args['T'] = int(num_steps)

    # noise
    if 'normal' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [0]
        S.args['sample_distribution_gmm_variances'] = [1]
    elif 'gmm2' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [-1,1]
        S.args['sample_distribution_gmm_variances'] = [1,1]
    elif 'gmm3' in noise:
        S.args['sample_distribution'] = noise
        S.args['sample_distribution_gmm_means'] = [-1,0,1]
        S.args['sample_distribution_gmm_variances'] = [1,1,1]



    if secondary_structure not in ['',None] or helix_bias+strand_bias+loop_bias > 0:
        S.args['checkpoint'] = dssp_checkpoint
        S.args['d_t1d'] = 29
        print('using dssp checkpoint')
    else:
        S.args['checkpoint'] = og_checkpoint
        S.args['d_t1d'] = 24
        print('using og checkpoint')
    

    for k,v in S.args.items():
        print(f"{k} --> {v}")
    
    # init S
    S.model_init()
    S.diffuser_init()
    S.setup()

    # sampling loop
    plddt_data = []
    for j in range(S.max_t):
        output_seq, output_pdb, plddt = S.take_step_get_outputs(j)
        plddt_data.append(plddt)
        yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)
    
    output_seq, output_pdb, plddt = S.get_outputs()

    yield output_seq, output_pdb, display_pdb(output_pdb), get_plddt_plot(plddt_data, S.max_t)

def get_plddt_plot(plddt_data, max_t):
    x = [i+1 for i in range(len(plddt_data))]
    fig, ax = plt.subplots(figsize=(15,6))
    ax.plot(x,plddt_data,color='#661dbf', linewidth=3,marker='o')
    ax.set_xticks([i+1 for i in range(max_t)])
    ax.set_yticks([(i+1)/10 for i in range(10)])
    ax.set_ylim([0,1])
    ax.set_ylabel('model confidence (plddt)')
    ax.set_xlabel('diffusion steps (t)')
    return fig

def display_pdb(path_to_pdb):
    '''
        #function to display pdb in py3dmol
    '''
    pdb = open(path_to_pdb, "r").read()
    
    view = py3Dmol.view(width=500, height=500)
    view.addModel(pdb, "pdb")
    view.setStyle({'model': -1}, {"cartoon": {'colorscheme':{'prop':'b','gradient':'roygb','min':0,'max':1}}})#'linear', 'min': 0, 'max': 1, 'colors': ["#ff9ef0","#a903fc",]}}}) 
    view.zoomTo()
    output = view._make_html().replace("'", '"')
    print(view._make_html())
    x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
    
    return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                            allow-scripts allow-same-origin allow-popups
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""

'''
    return f"""<iframe  style="width: 100%; height:700px" name="result" allow="midi; geolocation; microphone; camera; 
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
                            allow-scripts allow-same-origin allow-popups 
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
'''



# MOTIF SCAFFOLDING
def get_motif_preview(pdb_id, contigs):
    '''
        #function to display selected motif in py3dmol
    '''
    input_pdb = fetch_pdb(pdb_id=pdb_id.lower())

    # rewrite pdb
    parse = parse_pdb(input_pdb)
    #output_name = './rewrite_'+input_pdb.split('/')[-1]
    #writepdb(output_name, torch.tensor(parse_og['xyz']),torch.tensor(parse_og['seq']))
    #parse = parse_pdb(output_name)
    output_name = input_pdb

    pdb = open(output_name, "r").read()
    view = py3Dmol.view(width=500, height=500)
    view.addModel(pdb, "pdb")

    if contigs in ['',0]:
        contigs = ['0']
    else:
        contigs = [contigs]

    print('DEBUG: ',contigs)
    
    pdb_map = get_mappings(ContigMap(parse,contigs))
    print('DEBUG: ',pdb_map)
    print('DEBUG: ',pdb_map['con_ref_idx0'])
    roi = [x[1]-1 for x in pdb_map['con_ref_pdb_idx']]

    colormap = {0:'#D3D3D3', 1:'#F74CFF'}
    colors = {i+1: colormap[1] if i in roi else colormap[0] for i in range(parse['xyz'].shape[0])}
    view.setStyle({"cartoon": {"colorscheme": {"prop": "resi", "map": colors}}})
    view.zoomTo()
    output = view._make_html().replace("'", '"')
    print(view._make_html())
    x = f"""<!DOCTYPE html><html></center> {output} </center></html>"""  # do not use ' in this input
    
    return f"""<iframe height="500px" width="100%"  name="result" allow="midi; geolocation; microphone; camera;
                            display-capture; encrypted-media;" sandbox="allow-modals allow-forms
                            allow-scripts allow-same-origin allow-popups
                            allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
                            allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>""", output_name

def fetch_pdb(pdb_id=None):
    if pdb_id is None or pdb_id == "":
        return None
    else:
        os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_id}.pdb")
        return f"{pdb_id}.pdb"

# MSA AND PSSM GUIDANCE
def save_pssm(file_upload):
    filename = file_upload.name
    orig_name = file_upload.orig_name
    if filename.split('.')[-1] in ['fasta', 'a3m']:
        return msa_to_pssm(file_upload)
    return filename

def msa_to_pssm(msa_file):
    # Define the lookup table for converting amino acids to indices
    aa_to_index = {'A': 0, 'R': 1, 'N': 2, 'D': 3, 'C': 4, 'Q': 5, 'E': 6, 'G': 7, 'H': 8, 'I': 9, 'L': 10,
                'K': 11, 'M': 12, 'F': 13, 'P': 14, 'S': 15, 'T': 16, 'W': 17, 'Y': 18, 'V': 19, 'X': 20, '-': 21}
    # Open the FASTA file and read the sequences
    records = list(SeqIO.parse(msa_file.name, "fasta"))

    assert len(records) >= 1, "MSA must contain more than one protein sequecne."

    first_seq = str(records[0].seq)
    aligned_seqs = [first_seq]
    # print(aligned_seqs)
    # Perform sequence alignment using the Needleman-Wunsch algorithm
    aligner = Align.PairwiseAligner()
    aligner.open_gap_score = -0.7
    aligner.extend_gap_score = -0.3
    for record in records[1:]:
        alignment = aligner.align(first_seq, str(record.seq))[0]
        alignment = alignment.format().split("\n")
        al1 = alignment[0]
        al2 = alignment[2]
        al1_fin = ""
        al2_fin = ""
        percent_gap = al2.count('-')/ len(al2)
        if percent_gap > 0.4:
            continue
        for i in range(len(al1)):
            if al1[i] != '-':
                al1_fin += al1[i]
                al2_fin += al2[i]
        aligned_seqs.append(str(al2_fin))
    # Get the length of the aligned sequences
    aligned_seq_length = len(first_seq)
    # Initialize the position scoring matrix
    matrix = np.zeros((22, aligned_seq_length))
    # Iterate through the aligned sequences and count the amino acids at each position
    for seq in aligned_seqs:
        #print(seq)
        for i in range(aligned_seq_length):
            if i == len(seq):
                break
            amino_acid = seq[i]
            if amino_acid.upper() not in aa_to_index.keys():
                continue
            else:
                aa_index = aa_to_index[amino_acid.upper()]
            matrix[aa_index, i] += 1
    # Normalize the counts to get the frequency of each amino acid at each position
    matrix /= len(aligned_seqs)
    print(len(aligned_seqs))
    matrix[20:,]=0

    outdir = ".".join(msa_file.name.split('.')[:-1]) + ".csv"
    np.savetxt(outdir, matrix[:21,:].T, delimiter=",")
    return outdir

def get_pssm(fasta_msa, input_pssm):

    if input_pssm not in ['',None]:
        outdir = input_pssm.name
    else:
        outdir = save_pssm(fasta_msa)

    pssm = np.loadtxt(outdir, delimiter=",", dtype=float)
    fig, ax = plt.subplots(figsize=(15,6))
    plt.imshow(torch.permute(torch.tensor(pssm),(1,0)))

    return fig, outdir


#toggle options
def toggle_seq_input(choice):
    if choice == "protein length":
        return gr.update(visible=True, value=None), gr.update(visible=False, value=None)
    elif choice == "custom sequence":
        return gr.update(visible=False, value=None), gr.update(visible=True, value=None)

def toggle_secondary_structure(choice):
    if choice == "sliders":
        return gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=True, value=None),gr.update(visible=False, value=None)
    elif choice == "explicit":
        return gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=False, value=None),gr.update(visible=True, value=None)


# Define the Gradio interface
with gr.Blocks(theme='ParityError/Interstellar') as demo:
    
    gr.Markdown(f"""# Protein Generation via Diffusion in Sequence Space""")

    with gr.Row():
        with gr.Column(min_width=500):
            gr.Markdown(f"""
                    ## How does it work?\n
                    --- [PREPRINT](https://biorxiv.org/content/10.1101/2023.05.08.539766v1) ---
                    Protein sequence and structure co-generation is a long outstanding problem in the field of protein design. By implementing [ddpm](https://arxiv.org/abs/2006.11239) style diffusion over protein seqeuence space we generate protein sequence and structure pairs. Starting with [RoseTTAFold](https://www.science.org/doi/10.1126/science.abj8754), a protein structure prediction network, we finetuned it to predict sequence and structure given a partially noised sequence. By applying losses to both the predicted sequence and structure the model is forced to generate meaningful pairs. Diffusing in sequence space makes it easy to implement potentials to guide the diffusive process toward particular amino acid composition, net charge, and more! Furthermore, you can sample proteins from a family of sequences or even train a small sequence to function classifier to guide generation toward desired sequences.
                    ![fig1](http://files.ipd.uw.edu/pub/sequence_diffusion/figs/diffusion_landscape.png)
                    
                    ## How to use it?\n
                    A user can either design a custom input sequence to diffuse from or specify a length below. To scaffold a sequence use the following format where X represent residues to diffuse: XXXXXXXXSCIENCESCIENCEXXXXXXXXXXXXXXXXXXX. You can even design a protein with your name XXXXXXXXXXXXNAMEHEREXXXXXXXXXXXXX!
                    
                    ### Acknowledgements\n
                    Thank you to Simon Dürr and the Hugging Face team for setting us up with a community GPU grant!
                    """)
            
        gr.Markdown("""
        ## Model in Action
        ![gif1](http://files.ipd.uw.edu/pub/sequence_diffusion/figs/seqdiff_anim_720p.gif)
        """)

    with gr.Row().style(equal_height=False):
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Inputs"):
                    gr.Markdown("""## INPUTS""")
                    gr.Markdown("""#### Start Sequence
                                Specify the protein length for complete unconditional generation, or scaffold a motif (or your name) using the custom sequence input""")
                    seq_opt = gr.Radio(["protein length","custom sequence"], label="How would you like to specify the starting sequence?", value='protein length')

                    sequence = gr.Textbox(label="custom sequence", lines=1, placeholder='AMINO ACIDS: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y\n  MASK TOKEN: X', visible=False)
                    seq_len = gr.Slider(minimum=5.0, maximum=250.0, label="protein length", value=100, visible=True)
                    
                    seq_opt.change(fn=toggle_seq_input,
                                            inputs=[seq_opt],
                                            outputs=[seq_len, sequence],
                                            queue=False)

                    gr.Markdown("""### Optional Parameters""")
                    with gr.Accordion(label='Secondary Structure',open=True):
                        gr.Markdown("""Try changing the sliders or inputing explicit secondary structure conditioning for each residue""")
                        sec_str_opt = gr.Radio(["sliders","explicit"], label="How would you like to specify secondary structure?", value='sliders')

                        secondary_structure = gr.Textbox(label="secondary structure", lines=1, placeholder='HELIX = H  STRAND = S  LOOP = L  MASK = X(must be the same length as input sequence)', visible=False)
                        
                        with gr.Column():
                            helix_bias = gr.Slider(minimum=0.0, maximum=0.05, label="helix bias", visible=True)
                            strand_bias = gr.Slider(minimum=0.0, maximum=0.05, label="strand bias", visible=True)
                            loop_bias = gr.Slider(minimum=0.0, maximum=0.20, label="loop bias", visible=True)
                    
                        sec_str_opt.change(fn=toggle_secondary_structure,
                                                inputs=[sec_str_opt],
                                                outputs=[helix_bias,strand_bias,loop_bias,secondary_structure],
                                                queue=False)
                        
                    with gr.Accordion(label='Amino Acid Compositional Bias',open=False):
                        gr.Markdown("""Bias sequence composition for particular amino acids by specifying the one letter code followed by the fraction to bias. This can be input as a list for example: W0.2,E0.1""")
                        with gr.Row():
                            aa_bias = gr.Textbox(label="aa bias", lines=1, placeholder='specify one letter AA and fraction to bias, for example W0.1 or M0.1,K0.1' )
                            aa_bias_potential = gr.Textbox(label="aa bias scale", lines=1, placeholder='AA Bias potential scale (recomended range 1.0-5.0)')
                    
                    '''
                    with gr.Accordion(label='Charge Bias',open=False):
                        gr.Markdown("""Bias for a specified net charge at a particular pH using the boxes below""")
                        with gr.Row():
                            target_charge = gr.Textbox(label="net charge", lines=1, placeholder='net charge to target')
                            target_ph = gr.Textbox(label="pH", lines=1, placeholder='pH at which net charge is desired')
                            charge_potential = gr.Textbox(label="charge potential scale", lines=1, placeholder='charge potential scale (recomended range 1.0-5.0)')
                    '''

                    with gr.Accordion(label='Hydrophobic Bias',open=False):
                        gr.Markdown("""Bias for or against hydrophobic composition, to get more soluble proteins, bias away with a negative target score (ex. -5)""")
                        with gr.Row():
                            hydrophobic_target_score = gr.Textbox(label="hydrophobic score", lines=1, placeholder='hydrophobic score to target (negative score is good for solublility)')
                            hydrophobic_potential = gr.Textbox(label="hydrophobic potential scale", lines=1, placeholder='hydrophobic potential scale (recomended range 1.0-2.0)')
                    
                    with gr.Accordion(label='Diffusion Params',open=False):
                        gr.Markdown("""Increasing T to more steps can be helpful for harder design challenges, sampling from different distributions can change the sequence and structural composition""")
                        with gr.Row():
                            num_steps = gr.Textbox(label="T", lines=1, placeholder='number of diffusion steps (25 or less will speed things up)')
                            noise = gr.Dropdown(['normal','gmm2 [-1,1]','gmm3 [-1,0,1]'], label='noise type', value='normal') 
                
                with gr.TabItem("Motif Selection"):

                    gr.Markdown("""### Motif Selection Preview""")
                    gr.Markdown('Contigs explained: to grab residues (seq and str) on a pdb chain you will provide the chain letter followed by a range of residues as indexed in the pdb file for example (A3-10) is the syntax to select residues 3-10 on chain A (the chain always needs to be specified). To add diffused residues to either side of this motif you can specify a range or discrete value without a chain letter infront. To add 15 residues before the motif and 20-30 residues (randomly sampled) after use the following syntax: 15,A3-10,20-30 commas are used to separate regions selected from the pdb and designed (diffused) resiudes which will be added. ')
                    pdb_id_code = gr.Textbox(label="PDB ID", lines=1, placeholder='INPUT PDB ID TO FETCH (ex. 1DPX)', visible=True)
                    contigs = gr.Textbox(label="contigs", lines=1, placeholder='specify contigs to grab particular residues from pdb ()', visible=True)
                    gr.Markdown('Using the same contig syntax, seq or str of input motif residues can be masked, allowing the model to hold strucutre fixed and design sequence or vice-versa')
                    with gr.Row():
                        seq_mask = gr.Textbox(label='seq mask',lines=1,placeholder='input residues to mask sequence')
                        str_mask = gr.Textbox(label='str mask',lines=1,placeholder='input residues to mask structure')
                    preview_viewer = gr.HTML()
                    rewrite_pdb = gr.File(label='PDB file')
                    preview_btn = gr.Button("Preview Motif")

                with gr.TabItem("MSA to PSSM"):
                    gr.Markdown("""### MSA to PSSM Generation""")
                    gr.Markdown('input either an MSA or PSSM to guide the model toward generating samples within your family of interest')
                    with gr.Row():
                        fasta_msa = gr.File(label='MSA')
                        input_pssm = gr.File(label='PSSM (.csv)')
                    pssm = gr.File(label='Generated PSSM')
                    pssm_view = gr.Plot(label='PSSM Viewer')
                    pssm_gen_btn = gr.Button("Generate PSSM")


            btn = gr.Button("GENERATE")

        #with gr.Row():
        with gr.Column():
            gr.Markdown("""## OUTPUTS""")
            gr.Markdown("""#### Confidence score for generated structure at each timestep""")
            plddt_plot = gr.Plot(label='plddt at step t')
            gr.Markdown("""#### Output protein sequnece""")
            output_seq = gr.Textbox(label="sequence")
            gr.Markdown("""#### Download PDB file""")
            output_pdb = gr.File(label="PDB file")
            gr.Markdown("""#### Structure viewer""")
            output_viewer = gr.HTML()

    gr.Markdown("""### Don't know where to get started? Click on an example below to try it out!""")
    gr.Examples(
        [["","125",0.0,0.0,0.2,"","","","20","normal",'','','',None,'','',None],
         ["","100",0.0,0.0,0.0,"","W0.2","2","20","normal",'','','',None,'','',None],
         ["","100",0.0,0.0,0.0,
        "XXHHHHHHHHHXXXXXXXHHHHHHHHHXXXXXXXHHHHHHHHXXXXSSSSSSSSSSSXXXXXXXXSSSSSSSSSSSSXXXXXXXSSSSSSSSSXXXXXXX",
                "","","25","normal",'','','',None,'','',None],
         ["XXXXXXXXXXXXXXXXXXXXXXXXXIPDXXXXXXXXXXXXXXXXXXXXXXPEPSEQXXXXXXXXXXXXXXXXXXXXXXXXXXIPDXXXXXXXXXXXXXXXXXXX",
          "",0.0,0.0,0.0,"","","","25","normal",'','','',None,'','',None],
         ["","",0.0,0.0,0.0,"","","","25","normal",'','',
          '9,D10-11,8,D20-20,4,D25-35,65,D101-101,2,D104-105,8,D114-116,15,D132-138,6,D145-145,2,D148-148,12,D161-161,3',
          './tmp/PSSM_lysozyme.csv',
          'D25-25,D27-31,D33-35,D132-137',
          'D26-26','./tmp/150l.pdb']
         
         ],
        inputs=[sequence, 
                seq_len, 
                helix_bias, 
                strand_bias, 
                loop_bias, 
                secondary_structure, 
                aa_bias, 
                aa_bias_potential,
                #target_charge, 
                #target_ph, 
                #charge_potential, 
                num_steps, 
                noise, 
                hydrophobic_target_score, 
                hydrophobic_potential,
                contigs,
                pssm,
                seq_mask,
                str_mask,
                rewrite_pdb],
        outputs=[output_seq,
                 output_pdb,
                 output_viewer,
                 plddt_plot],
        fn=protein_diffusion_model,
        ) 
    
    preview_btn.click(get_motif_preview,[pdb_id_code, contigs],[preview_viewer, rewrite_pdb])

    pssm_gen_btn.click(get_pssm,[fasta_msa,input_pssm],[pssm_view, pssm])

    btn.click(protein_diffusion_model, 
                [sequence, 
                 seq_len, 
                 helix_bias, 
                 strand_bias, 
                 loop_bias, 
                 secondary_structure, 
                 aa_bias, 
                 aa_bias_potential, 
                 #target_charge, 
                 #target_ph, 
                 #charge_potential, 
                 num_steps, 
                 noise, 
                 hydrophobic_target_score, 
                 hydrophobic_potential,
                 contigs,
                 pssm,
                 seq_mask, 
                 str_mask,
                 rewrite_pdb], 
                [output_seq,
                 output_pdb,
                 output_viewer,
                 plddt_plot])

demo.queue()
demo.launch(debug=True)