Spaces:
Running
on
T4
Running
on
T4
File size: 6,613 Bytes
59a9ccf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import numpy as np
import scipy
import scipy.spatial
import string
import os,re
import random
import util
import gzip
to1letter = {
"ALA":'A', "ARG":'R', "ASN":'N', "ASP":'D', "CYS":'C',
"GLN":'Q', "GLU":'E', "GLY":'G', "HIS":'H', "ILE":'I',
"LEU":'L', "LYS":'K', "MET":'M', "PHE":'F', "PRO":'P',
"SER":'S', "THR":'T', "TRP":'W', "TYR":'Y', "VAL":'V' }
# read A3M and convert letters into
# integers in the 0..20 range,
# also keep track of insertions
def parse_a3m(filename):
msa = []
ins = []
table = str.maketrans(dict.fromkeys(string.ascii_lowercase))
#print(filename)
if filename.split('.')[-1] == 'gz':
fp = gzip.open(filename, 'rt')
else:
fp = open(filename, 'r')
# read file line by line
for line in fp:
# skip labels
if line[0] == '>':
continue
# remove right whitespaces
line = line.rstrip()
if len(line) == 0:
continue
# remove lowercase letters and append to MSA
msa.append(line.translate(table))
# sequence length
L = len(msa[-1])
# 0 - match or gap; 1 - insertion
a = np.array([0 if c.isupper() or c=='-' else 1 for c in line])
i = np.zeros((L))
if np.sum(a) > 0:
# positions of insertions
pos = np.where(a==1)[0]
# shift by occurrence
a = pos - np.arange(pos.shape[0])
# position of insertions in cleaned sequence
# and their length
pos,num = np.unique(a, return_counts=True)
# append to the matrix of insetions
i[pos] = num
ins.append(i)
if len(msa) == 10000:
break
# convert letters into numbers
alphabet = np.array(list("ARNDCQEGHILKMFPSTWYV-"), dtype='|S1').view(np.uint8)
msa = np.array([list(s) for s in msa], dtype='|S1').view(np.uint8)
for i in range(alphabet.shape[0]):
msa[msa == alphabet[i]] = i
# treat all unknown characters as gaps
msa[msa > 20] = 20
ins = np.array(ins, dtype=np.uint8)
return msa,ins
# read and extract xyz coords of N,Ca,C atoms
# from a PDB file
def parse_pdb(filename):
lines = open(filename,'r').readlines()
return parse_pdb_lines(lines)
#'''
def parse_pdb_lines(lines):
# indices of residues observed in the structure
idx_s = [int(l[22:26]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"]
# 4 BB + up to 10 SC atoms
xyz = np.full((len(idx_s), 14, 3), np.nan, dtype=np.float32)
for l in lines:
if l[:4] != "ATOM":
continue
resNo, atom, aa = int(l[22:26]), l[12:16], l[17:20]
idx = idx_s.index(resNo)
for i_atm, tgtatm in enumerate(util.aa2long[util.aa2num[aa]]):
if tgtatm == atom:
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])]
break
# save atom mask
mask = np.logical_not(np.isnan(xyz[...,0]))
xyz[np.isnan(xyz[...,0])] = 0.0
return xyz,mask,np.array(idx_s)
#'''
'''
def parse_pdb_lines(lines):
# indices of residues observed in the structure
#idx_s = [int(l[22:26]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"]
res = [(l[22:26],l[17:20]) for l in lines if l[:4]=="ATOM" and l[12:16].strip()=="CA"]
idx_s = [int(r[0]) for r in res]
seq = [util.aa2num[r[1]] if r[1] in util.aa2num.keys() else 20 for r in res]
# 4 BB + up to 10 SC atoms
xyz = np.full((len(idx_s), 14, 3), np.nan, dtype=np.float32)
for l in lines:
if l[:4] != "ATOM":
continue
resNo, atom, aa = int(l[22:26]), l[12:16], l[17:20]
idx = idx_s.index(resNo)
for i_atm, tgtatm in enumerate(util.aa2long[util.aa2num[aa]]):
if tgtatm == atom:
xyz[idx,i_atm,:] = [float(l[30:38]), float(l[38:46]), float(l[46:54])]
break
# save atom mask
mask = np.logical_not(np.isnan(xyz[...,0]))
xyz[np.isnan(xyz[...,0])] = 0.0
return xyz,mask,np.array(idx_s), np.array(seq)
'''
def parse_templates(item, params):
# init FFindexDB of templates
### and extract template IDs
### present in the DB
ffdb = FFindexDB(read_index(params['FFDB']+'_pdb.ffindex'),
read_data(params['FFDB']+'_pdb.ffdata'))
#ffids = set([i.name for i in ffdb.index])
# process tabulated hhsearch output to get
# matched positions and positional scores
infile = params['DIR']+'/hhr/'+item[-2:]+'/'+item+'.atab'
hits = []
for l in open(infile, "r").readlines():
if l[0]=='>':
key = l[1:].split()[0]
hits.append([key,[],[]])
elif "score" in l or "dssp" in l:
continue
else:
hi = l.split()[:5]+[0.0,0.0,0.0]
hits[-1][1].append([int(hi[0]),int(hi[1])])
hits[-1][2].append([float(hi[2]),float(hi[3]),float(hi[4])])
# get per-hit statistics from an .hhr file
# (!!! assume that .hhr and .atab have the same hits !!!)
# [Probab, E-value, Score, Aligned_cols,
# Identities, Similarity, Sum_probs, Template_Neff]
lines = open(infile[:-4]+'hhr', "r").readlines()
pos = [i+1 for i,l in enumerate(lines) if l[0]=='>']
for i,posi in enumerate(pos):
hits[i].append([float(s) for s in re.sub('[=%]',' ',lines[posi]).split()[1::2]])
# parse templates from FFDB
for hi in hits:
#if hi[0] not in ffids:
# continue
entry = get_entry_by_name(hi[0], ffdb.index)
if entry == None:
continue
data = read_entry_lines(entry, ffdb.data)
hi += list(parse_pdb_lines(data))
# process hits
counter = 0
xyz,qmap,mask,f0d,f1d,ids = [],[],[],[],[],[]
for data in hits:
if len(data)<7:
continue
qi,ti = np.array(data[1]).T
_,sel1,sel2 = np.intersect1d(ti, data[6], return_indices=True)
ncol = sel1.shape[0]
if ncol < 10:
continue
ids.append(data[0])
f0d.append(data[3])
f1d.append(np.array(data[2])[sel1])
xyz.append(data[4][sel2])
mask.append(data[5][sel2])
qmap.append(np.stack([qi[sel1]-1,[counter]*ncol],axis=-1))
counter += 1
xyz = np.vstack(xyz).astype(np.float32)
mask = np.vstack(mask).astype(np.bool)
qmap = np.vstack(qmap).astype(np.long)
f0d = np.vstack(f0d).astype(np.float32)
f1d = np.vstack(f1d).astype(np.float32)
ids = ids
return xyz,mask,qmap,f0d,f1d,ids
|